Allen-Cahn Chan-Vese模型的多相图像分割

Chao Liu, Zhonghua Qiao, Qian Zhang
{"title":"Allen-Cahn Chan-Vese模型的多相图像分割","authors":"Chao Liu, Zhonghua Qiao, Qian Zhang","doi":"10.48550/arXiv.2203.14233","DOIUrl":null,"url":null,"abstract":"This paper proposes an Allen-Cahn Chan-Vese model to settle the multi-phase image segmentation. We first integrate the Allen--Cahn term and the Chan--Vese fitting energy term to establish an energy functional, whose minimum locates the segmentation contour. The subsequent minimization process can be attributed to variational calculation on fitting intensities and the solution approximation of several Allen-Cahn equations, wherein $n$ Allen-Cahn equations are enough to partition $m = 2^n$ segments. The derived Allen-Cahn equations are solved by efficient numerical solvers with exponential time integrations and finite difference space discretization. The discrete maximum bound principle and energy stability of the proposed numerical schemes are proved. Finally, the capability of our segmentation method is verified in various experiments for different types of images.","PeriodicalId":10572,"journal":{"name":"Comput. Math. Appl.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-phase image segmentation by the Allen-Cahn Chan-Vese model\",\"authors\":\"Chao Liu, Zhonghua Qiao, Qian Zhang\",\"doi\":\"10.48550/arXiv.2203.14233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an Allen-Cahn Chan-Vese model to settle the multi-phase image segmentation. We first integrate the Allen--Cahn term and the Chan--Vese fitting energy term to establish an energy functional, whose minimum locates the segmentation contour. The subsequent minimization process can be attributed to variational calculation on fitting intensities and the solution approximation of several Allen-Cahn equations, wherein $n$ Allen-Cahn equations are enough to partition $m = 2^n$ segments. The derived Allen-Cahn equations are solved by efficient numerical solvers with exponential time integrations and finite difference space discretization. The discrete maximum bound principle and energy stability of the proposed numerical schemes are proved. Finally, the capability of our segmentation method is verified in various experiments for different types of images.\",\"PeriodicalId\":10572,\"journal\":{\"name\":\"Comput. Math. Appl.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Math. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2203.14233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.14233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种Allen-Cahn Chan-Vese模型来解决多阶段图像分割问题。首先对Allen—Cahn项和Chan—Vese拟合能量项进行积分,建立能量泛函,其最小值定位分割轮廓。随后的最小化过程可归因于拟合强度的变分计算和几个Allen-Cahn方程的解逼近,其中$n$ Allen-Cahn方程足以划分$m = 2^n$段。推导出的Allen-Cahn方程采用指数时间积分和有限差分空间离散的高效数值求解方法求解。证明了所提数值格式的离散最大界原理和能量稳定性。最后,通过对不同类型图像的分割实验,验证了本文方法的分割能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-phase image segmentation by the Allen-Cahn Chan-Vese model
This paper proposes an Allen-Cahn Chan-Vese model to settle the multi-phase image segmentation. We first integrate the Allen--Cahn term and the Chan--Vese fitting energy term to establish an energy functional, whose minimum locates the segmentation contour. The subsequent minimization process can be attributed to variational calculation on fitting intensities and the solution approximation of several Allen-Cahn equations, wherein $n$ Allen-Cahn equations are enough to partition $m = 2^n$ segments. The derived Allen-Cahn equations are solved by efficient numerical solvers with exponential time integrations and finite difference space discretization. The discrete maximum bound principle and energy stability of the proposed numerical schemes are proved. Finally, the capability of our segmentation method is verified in various experiments for different types of images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信