$(2+1)$ SU(2)晶格规范理论弱耦合极限中的质量间隙

R. Anishetty, T. Sreeraj
{"title":"$(2+1)$ SU(2)晶格规范理论弱耦合极限中的质量间隙","authors":"R. Anishetty, T. Sreeraj","doi":"10.1103/PhysRevD.97.074511","DOIUrl":null,"url":null,"abstract":"We develop the dual description of $2+1$ SU(2) lattice gauge theory as interacting `abelian like' electric loops by using Schwinger bosons. \"Point splitting\" of the lattice enables us to construct explicit Hilbert space for the gauge invariant theory which in turn makes dynamics more transparent. Using path integral representation in phase space, the interacting closed loop dynamics is analyzed in the weak coupling limit to get the mass gap.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Mass gap in the weak coupling limit of $(2+1)$ SU(2) lattice gauge theory\",\"authors\":\"R. Anishetty, T. Sreeraj\",\"doi\":\"10.1103/PhysRevD.97.074511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop the dual description of $2+1$ SU(2) lattice gauge theory as interacting `abelian like' electric loops by using Schwinger bosons. \\\"Point splitting\\\" of the lattice enables us to construct explicit Hilbert space for the gauge invariant theory which in turn makes dynamics more transparent. Using path integral representation in phase space, the interacting closed loop dynamics is analyzed in the weak coupling limit to get the mass gap.\",\"PeriodicalId\":8440,\"journal\":{\"name\":\"arXiv: High Energy Physics - Lattice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevD.97.074511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevD.97.074511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

利用Schwinger玻色子将$2+1$ SU(2)晶格规范理论发展为相互作用的“类阿贝尔”电环的对偶描述。点阵的“点分裂”使我们能够为规范不变理论构造显式希尔伯特空间,从而使动力学更加透明。利用相空间中的路径积分表示,分析了弱耦合极限下的相互作用闭环动力学,得到了质量间隙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mass gap in the weak coupling limit of $(2+1)$ SU(2) lattice gauge theory
We develop the dual description of $2+1$ SU(2) lattice gauge theory as interacting `abelian like' electric loops by using Schwinger bosons. "Point splitting" of the lattice enables us to construct explicit Hilbert space for the gauge invariant theory which in turn makes dynamics more transparent. Using path integral representation in phase space, the interacting closed loop dynamics is analyzed in the weak coupling limit to get the mass gap.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信