{"title":"$(2+1)$ SU(2)晶格规范理论弱耦合极限中的质量间隙","authors":"R. Anishetty, T. Sreeraj","doi":"10.1103/PhysRevD.97.074511","DOIUrl":null,"url":null,"abstract":"We develop the dual description of $2+1$ SU(2) lattice gauge theory as interacting `abelian like' electric loops by using Schwinger bosons. \"Point splitting\" of the lattice enables us to construct explicit Hilbert space for the gauge invariant theory which in turn makes dynamics more transparent. Using path integral representation in phase space, the interacting closed loop dynamics is analyzed in the weak coupling limit to get the mass gap.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Mass gap in the weak coupling limit of $(2+1)$ SU(2) lattice gauge theory\",\"authors\":\"R. Anishetty, T. Sreeraj\",\"doi\":\"10.1103/PhysRevD.97.074511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop the dual description of $2+1$ SU(2) lattice gauge theory as interacting `abelian like' electric loops by using Schwinger bosons. \\\"Point splitting\\\" of the lattice enables us to construct explicit Hilbert space for the gauge invariant theory which in turn makes dynamics more transparent. Using path integral representation in phase space, the interacting closed loop dynamics is analyzed in the weak coupling limit to get the mass gap.\",\"PeriodicalId\":8440,\"journal\":{\"name\":\"arXiv: High Energy Physics - Lattice\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevD.97.074511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevD.97.074511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mass gap in the weak coupling limit of $(2+1)$ SU(2) lattice gauge theory
We develop the dual description of $2+1$ SU(2) lattice gauge theory as interacting `abelian like' electric loops by using Schwinger bosons. "Point splitting" of the lattice enables us to construct explicit Hilbert space for the gauge invariant theory which in turn makes dynamics more transparent. Using path integral representation in phase space, the interacting closed loop dynamics is analyzed in the weak coupling limit to get the mass gap.