不连续伽辽金法模拟任意尺寸光子晶体中的光传播

M. Kozoň, L. J. C. van Willenswaard, M. Schlottbom, W. L. Vos, J. J. van der Vegt
{"title":"不连续伽辽金法模拟任意尺寸光子晶体中的光传播","authors":"M. Kozoň, L. J. C. van Willenswaard, M. Schlottbom, W. L. Vos, J. J. van der Vegt","doi":"10.1109/CLEO/Europe-EQEC57999.2023.10232250","DOIUrl":null,"url":null,"abstract":"The study of photonic crystals has strongly benefited from computational methods see, e.g., [1], [2], which are generally more accessible than laboratory experiments. Such calculations enable the study of idealized structures free of fabrication defects and provide insight into physical phenomena that would be difficult to isolate in experiments. Due to their predictive power, computations are also used to optimize the structures prior to performing the cost- and time-expensive fabrication. Nevertheless, computational modelling of realistic photonic crystals, consisting of hundreds of unit cells, is notoriously difficult due to their multiscale character, requiring very fine discretization of each unit cell. This leads to tremendous computational complexity, basically untractable for a realistic-size crystal, even on powerful supercomputers.","PeriodicalId":19477,"journal":{"name":"Oceans","volume":"195 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discontinuous Galerkin Method to Model Light Propagation in Photonic Crystals of Any Size\",\"authors\":\"M. Kozoň, L. J. C. van Willenswaard, M. Schlottbom, W. L. Vos, J. J. van der Vegt\",\"doi\":\"10.1109/CLEO/Europe-EQEC57999.2023.10232250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of photonic crystals has strongly benefited from computational methods see, e.g., [1], [2], which are generally more accessible than laboratory experiments. Such calculations enable the study of idealized structures free of fabrication defects and provide insight into physical phenomena that would be difficult to isolate in experiments. Due to their predictive power, computations are also used to optimize the structures prior to performing the cost- and time-expensive fabrication. Nevertheless, computational modelling of realistic photonic crystals, consisting of hundreds of unit cells, is notoriously difficult due to their multiscale character, requiring very fine discretization of each unit cell. This leads to tremendous computational complexity, basically untractable for a realistic-size crystal, even on powerful supercomputers.\",\"PeriodicalId\":19477,\"journal\":{\"name\":\"Oceans\",\"volume\":\"195 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oceans\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEO/Europe-EQEC57999.2023.10232250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEO/Europe-EQEC57999.2023.10232250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光子晶体的研究很大程度上得益于计算方法,例如[1],[2],它们通常比实验室实验更容易获得。这样的计算使研究没有制造缺陷的理想结构成为可能,并为在实验中难以分离的物理现象提供洞见。由于其预测能力,计算也用于在执行成本和时间昂贵的制造之前优化结构。然而,由数百个单元格组成的现实光子晶体的计算建模由于其多尺度特性而非常困难,需要对每个单元格进行非常精细的离散化。这导致了巨大的计算复杂性,即使在强大的超级计算机上,现实尺寸的晶体也基本上无法处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discontinuous Galerkin Method to Model Light Propagation in Photonic Crystals of Any Size
The study of photonic crystals has strongly benefited from computational methods see, e.g., [1], [2], which are generally more accessible than laboratory experiments. Such calculations enable the study of idealized structures free of fabrication defects and provide insight into physical phenomena that would be difficult to isolate in experiments. Due to their predictive power, computations are also used to optimize the structures prior to performing the cost- and time-expensive fabrication. Nevertheless, computational modelling of realistic photonic crystals, consisting of hundreds of unit cells, is notoriously difficult due to their multiscale character, requiring very fine discretization of each unit cell. This leads to tremendous computational complexity, basically untractable for a realistic-size crystal, even on powerful supercomputers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信