海报:将任务和数据并行性引入气候模式输出分析

R. Jacob, Jayesh Krishna, Xiabing Xu, S. Mickelson, T. Tautges, M. Wilde, R. Latham, Ian T Foster, R. Ross, M. Hereld, J. Larson, P. Bochev, K. Peterson, M. Taylor, K. Schuchardt, Jain Yin, D. Middleton, Mary Haley, David Brown, Wei Huang, D. Shea, R. Brownrigg, M. Vertenstein, K. Ma, Jingrong Xie
{"title":"海报:将任务和数据并行性引入气候模式输出分析","authors":"R. Jacob, Jayesh Krishna, Xiabing Xu, S. Mickelson, T. Tautges, M. Wilde, R. Latham, Ian T Foster, R. Ross, M. Hereld, J. Larson, P. Bochev, K. Peterson, M. Taylor, K. Schuchardt, Jain Yin, D. Middleton, Mary Haley, David Brown, Wei Huang, D. Shea, R. Brownrigg, M. Vertenstein, K. Ma, Jingrong Xie","doi":"10.1109/SC.Companion.2012.283","DOIUrl":null,"url":null,"abstract":"Climate models are both outputting larger and larger amounts of data and are doing it on more sophisticated numerical grids. The tools climate scientists have used to analyze climate output, an essential component of climate modeling, are single threaded and assume rectangular structured grids in their analysis algorithms. We are bringing both task- and data-parallelism to the analysis of climate model output. We have created a new data-parallel library, the Parallel Gridded Analysis Library (ParGAL) which can read in data using parallel I/O, store the data on a compete representation of the structured or unstructured mesh and perform sophisticated analysis on the data in parallel. ParGAL has been used to create a parallel version of a script-based analysis and visualization package. Finally, we have also taken current workflows and employed task-based parallelism to decrease the total execution time.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"12 1","pages":"1495"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Poster: Bringing Task and Data Parallelism to Analysis of Climate Model Output\",\"authors\":\"R. Jacob, Jayesh Krishna, Xiabing Xu, S. Mickelson, T. Tautges, M. Wilde, R. Latham, Ian T Foster, R. Ross, M. Hereld, J. Larson, P. Bochev, K. Peterson, M. Taylor, K. Schuchardt, Jain Yin, D. Middleton, Mary Haley, David Brown, Wei Huang, D. Shea, R. Brownrigg, M. Vertenstein, K. Ma, Jingrong Xie\",\"doi\":\"10.1109/SC.Companion.2012.283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate models are both outputting larger and larger amounts of data and are doing it on more sophisticated numerical grids. The tools climate scientists have used to analyze climate output, an essential component of climate modeling, are single threaded and assume rectangular structured grids in their analysis algorithms. We are bringing both task- and data-parallelism to the analysis of climate model output. We have created a new data-parallel library, the Parallel Gridded Analysis Library (ParGAL) which can read in data using parallel I/O, store the data on a compete representation of the structured or unstructured mesh and perform sophisticated analysis on the data in parallel. ParGAL has been used to create a parallel version of a script-based analysis and visualization package. Finally, we have also taken current workflows and employed task-based parallelism to decrease the total execution time.\",\"PeriodicalId\":6346,\"journal\":{\"name\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"volume\":\"12 1\",\"pages\":\"1495\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.Companion.2012.283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

气候模型输出的数据量越来越大,而且是在更复杂的数值网格上进行的。气候科学家用来分析气候输出(气候建模的重要组成部分)的工具是单线程的,在分析算法中采用矩形结构网格。我们正在将任务和数据并行性引入气候模型输出的分析。我们创建了一个新的数据并行库,并行网格分析库(ParGAL),它可以使用并行I/O读取数据,将数据存储在结构化或非结构化网格的竞争表示中,并并行地对数据进行复杂的分析。ParGAL被用来创建一个基于脚本的分析和可视化包的并行版本。最后,我们还采用了当前的工作流,并采用了基于任务的并行性来减少总执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poster: Bringing Task and Data Parallelism to Analysis of Climate Model Output
Climate models are both outputting larger and larger amounts of data and are doing it on more sophisticated numerical grids. The tools climate scientists have used to analyze climate output, an essential component of climate modeling, are single threaded and assume rectangular structured grids in their analysis algorithms. We are bringing both task- and data-parallelism to the analysis of climate model output. We have created a new data-parallel library, the Parallel Gridded Analysis Library (ParGAL) which can read in data using parallel I/O, store the data on a compete representation of the structured or unstructured mesh and perform sophisticated analysis on the data in parallel. ParGAL has been used to create a parallel version of a script-based analysis and visualization package. Finally, we have also taken current workflows and employed task-based parallelism to decrease the total execution time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信