仿射结构中的非椭圆腹板和凸集

IF 0.9 3区 数学 Q2 MATHEMATICS
Tair Akhmejanov
{"title":"仿射结构中的非椭圆腹板和凸集","authors":"Tair Akhmejanov","doi":"10.4171/dm/802","DOIUrl":null,"url":null,"abstract":"We describe the $\\mathfrak sl_3$ non-elliptic webs in terms of convex sets in the affine building. Kuperberg defined the non-elliptic web basis in work on rank-$2$ spider categories. Fontaine, Kamnitzer, Kuperberg showed that the $\\mathfrak sl_3$ non-elliptic webs are dual to CAT(0) diskoids in the affine building. We show that each such dual diskoid is the intersection of the min-convex and max-convex hulls of a generic polygon in the building. Choosing a generic polygon from each of the components of the Satake fiber produces the duals of the non-elliptic web basis. The convex hulls in the affine building were first introduced by Faltings and are related to tropical convexity, as discussed in work by Joswig, Sturmfels, Yu and by Zhang.","PeriodicalId":50567,"journal":{"name":"Documenta Mathematica","volume":"393 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non-Elliptic Webs and Convex Sets in the Affine Building\",\"authors\":\"Tair Akhmejanov\",\"doi\":\"10.4171/dm/802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the $\\\\mathfrak sl_3$ non-elliptic webs in terms of convex sets in the affine building. Kuperberg defined the non-elliptic web basis in work on rank-$2$ spider categories. Fontaine, Kamnitzer, Kuperberg showed that the $\\\\mathfrak sl_3$ non-elliptic webs are dual to CAT(0) diskoids in the affine building. We show that each such dual diskoid is the intersection of the min-convex and max-convex hulls of a generic polygon in the building. Choosing a generic polygon from each of the components of the Satake fiber produces the duals of the non-elliptic web basis. The convex hulls in the affine building were first introduced by Faltings and are related to tropical convexity, as discussed in work by Joswig, Sturmfels, Yu and by Zhang.\",\"PeriodicalId\":50567,\"journal\":{\"name\":\"Documenta Mathematica\",\"volume\":\"393 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Documenta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/dm/802\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documenta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/dm/802","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们用仿射结构中的凸集来描述$\mathfrak sl_3$非椭圆网。Kuperberg在rank-$2$蜘蛛分类的工作中定义了非椭圆网络基。Fontaine, Kamnitzer, Kuperberg证明了$\mathfrak sl_3$非椭圆网在仿射结构中是CAT(0)圆盘的对偶。我们证明了每一个这样的对偶盘面都是建筑物中一般多边形的最小凸壳和最大凸壳的交集。从竹纤维的每个组成部分中选择一个通用多边形,产生非椭圆网基的对偶。仿射建筑中的凸壳首先由Faltings引入,并与热带凸性有关,正如Joswig、Sturmfels、Yu和Zhang的作品所讨论的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Elliptic Webs and Convex Sets in the Affine Building
We describe the $\mathfrak sl_3$ non-elliptic webs in terms of convex sets in the affine building. Kuperberg defined the non-elliptic web basis in work on rank-$2$ spider categories. Fontaine, Kamnitzer, Kuperberg showed that the $\mathfrak sl_3$ non-elliptic webs are dual to CAT(0) diskoids in the affine building. We show that each such dual diskoid is the intersection of the min-convex and max-convex hulls of a generic polygon in the building. Choosing a generic polygon from each of the components of the Satake fiber produces the duals of the non-elliptic web basis. The convex hulls in the affine building were first introduced by Faltings and are related to tropical convexity, as discussed in work by Joswig, Sturmfels, Yu and by Zhang.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Documenta Mathematica
Documenta Mathematica 数学-数学
CiteScore
1.60
自引率
11.10%
发文量
0
审稿时长
>12 weeks
期刊介绍: DOCUMENTA MATHEMATICA is open to all mathematical fields und internationally oriented Documenta Mathematica publishes excellent and carefully refereed articles of general interest, which preferably should rely only on refereed sources and references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信