Supanida Hompoonsup, D. Chambers, P. Doherty, Gareth Williams
{"title":"在两类癌细胞中没有活性Nav通道的转录证据","authors":"Supanida Hompoonsup, D. Chambers, P. Doherty, Gareth Williams","doi":"10.1080/19336950.2019.1644858","DOIUrl":null,"url":null,"abstract":"ABSTRACT Voltage-gated sodium channel (Nav) expression in non-excitable cells has raised questions regarding their non-canonical roles. Interestingly, a growing body of evidence also points towards the prevalence of aberrant Nav expression in malignant tumors, potentially opening a new therapeutic window. In this study, the transcriptional consequences of channel inhibition were investigated in non-small cell lung carcinoma H460 and neuroblastoma SH-SYSY cell lines, that both express Nav1.7. Channel activity was blocked by the application of both selective, ProTx-II, and non-selective, tetrodotoxin, inhibitors. Global gene expression profiling did not point to any statistically significant inhibition-associated perturbation of the transcriptome. A small subset of genes that showed relatively consistent changes across multiple treatments were further assayed in the context of a multiplex bead expression array which failed to recapitulate the changes seen in the global array. We conclude that there is no robust transcriptional signature associated with the inhibition of two sodium channel expressing cancer cell lines and consequently sodium channel inhibition will not lend itself to therapeutic approaches such as transcription-based drug repurposing.","PeriodicalId":9750,"journal":{"name":"Channels","volume":"12 1","pages":"311 - 320"},"PeriodicalIF":3.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"No transcriptional evidence for active Nav channels in two classes of cancer cell\",\"authors\":\"Supanida Hompoonsup, D. Chambers, P. Doherty, Gareth Williams\",\"doi\":\"10.1080/19336950.2019.1644858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Voltage-gated sodium channel (Nav) expression in non-excitable cells has raised questions regarding their non-canonical roles. Interestingly, a growing body of evidence also points towards the prevalence of aberrant Nav expression in malignant tumors, potentially opening a new therapeutic window. In this study, the transcriptional consequences of channel inhibition were investigated in non-small cell lung carcinoma H460 and neuroblastoma SH-SYSY cell lines, that both express Nav1.7. Channel activity was blocked by the application of both selective, ProTx-II, and non-selective, tetrodotoxin, inhibitors. Global gene expression profiling did not point to any statistically significant inhibition-associated perturbation of the transcriptome. A small subset of genes that showed relatively consistent changes across multiple treatments were further assayed in the context of a multiplex bead expression array which failed to recapitulate the changes seen in the global array. We conclude that there is no robust transcriptional signature associated with the inhibition of two sodium channel expressing cancer cell lines and consequently sodium channel inhibition will not lend itself to therapeutic approaches such as transcription-based drug repurposing.\",\"PeriodicalId\":9750,\"journal\":{\"name\":\"Channels\",\"volume\":\"12 1\",\"pages\":\"311 - 320\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Channels\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/19336950.2019.1644858\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Channels","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336950.2019.1644858","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
No transcriptional evidence for active Nav channels in two classes of cancer cell
ABSTRACT Voltage-gated sodium channel (Nav) expression in non-excitable cells has raised questions regarding their non-canonical roles. Interestingly, a growing body of evidence also points towards the prevalence of aberrant Nav expression in malignant tumors, potentially opening a new therapeutic window. In this study, the transcriptional consequences of channel inhibition were investigated in non-small cell lung carcinoma H460 and neuroblastoma SH-SYSY cell lines, that both express Nav1.7. Channel activity was blocked by the application of both selective, ProTx-II, and non-selective, tetrodotoxin, inhibitors. Global gene expression profiling did not point to any statistically significant inhibition-associated perturbation of the transcriptome. A small subset of genes that showed relatively consistent changes across multiple treatments were further assayed in the context of a multiplex bead expression array which failed to recapitulate the changes seen in the global array. We conclude that there is no robust transcriptional signature associated with the inhibition of two sodium channel expressing cancer cell lines and consequently sodium channel inhibition will not lend itself to therapeutic approaches such as transcription-based drug repurposing.
期刊介绍:
Channels is an open access journal for all aspects of ion channel research. The journal publishes high quality papers that shed new light on ion channel and ion transporter/exchanger function, structure, biophysics, pharmacology, and regulation in health and disease.
Channels welcomes interdisciplinary approaches that address ion channel physiology in areas such as neuroscience, cardiovascular sciences, cancer research, endocrinology, and gastroenterology. Our aim is to foster communication among the ion channel and transporter communities and facilitate the advancement of the field.