纹理网格表面参数化不变学习的交叉图谱卷积

Shiwei Li, Zixin Luo, Mingmin Zhen, Yao Yao, Tianwei Shen, Tian Fang, Long Quan
{"title":"纹理网格表面参数化不变学习的交叉图谱卷积","authors":"Shiwei Li, Zixin Luo, Mingmin Zhen, Yao Yao, Tianwei Shen, Tian Fang, Long Quan","doi":"10.1109/CVPR.2019.00630","DOIUrl":null,"url":null,"abstract":"We present a convolutional network architecture for direct feature learning on mesh surfaces through their atlases of texture maps. The texture map encodes the parameterization from 3D to 2D domain, rendering not only RGB values but also rasterized geometric features if necessary. Since the parameterization of texture map is not pre-determined, and depends on the surface topologies, we therefore introduce a novel cross-atlas convolution to recover the original mesh geodesic neighborhood, so as to achieve the invariance property to arbitrary parameterization. The proposed module is integrated into classification and segmentation architectures, which takes the input texture map of a mesh, and infers the output predictions. Our method not only shows competitive performances on classification and segmentation public benchmarks, but also paves the way for the broad mesh surfaces learning.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"101 1 1","pages":"6136-6145"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Cross-Atlas Convolution for Parameterization Invariant Learning on Textured Mesh Surface\",\"authors\":\"Shiwei Li, Zixin Luo, Mingmin Zhen, Yao Yao, Tianwei Shen, Tian Fang, Long Quan\",\"doi\":\"10.1109/CVPR.2019.00630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a convolutional network architecture for direct feature learning on mesh surfaces through their atlases of texture maps. The texture map encodes the parameterization from 3D to 2D domain, rendering not only RGB values but also rasterized geometric features if necessary. Since the parameterization of texture map is not pre-determined, and depends on the surface topologies, we therefore introduce a novel cross-atlas convolution to recover the original mesh geodesic neighborhood, so as to achieve the invariance property to arbitrary parameterization. The proposed module is integrated into classification and segmentation architectures, which takes the input texture map of a mesh, and infers the output predictions. Our method not only shows competitive performances on classification and segmentation public benchmarks, but also paves the way for the broad mesh surfaces learning.\",\"PeriodicalId\":6711,\"journal\":{\"name\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"101 1 1\",\"pages\":\"6136-6145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2019.00630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们提出了一种卷积网络架构,用于通过网格表面的纹理映射地图集在网格表面上进行直接特征学习。纹理映射将参数化从3D域编码到2D域,不仅渲染RGB值,必要时还渲染栅格化的几何特征。由于纹理映射的参数化不是预先确定的,而是依赖于表面拓扑结构,因此我们引入了一种新的交叉图谱卷积来恢复原始网格测地线邻域,从而实现对任意参数化的不变性。该模块集成到分类和分割体系结构中,该体系结构采用网格的输入纹理映射,并推断输出预测。该方法不仅在分类和分割的公共基准测试中表现出具有竞争力的性能,而且为广义网格表面的学习铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-Atlas Convolution for Parameterization Invariant Learning on Textured Mesh Surface
We present a convolutional network architecture for direct feature learning on mesh surfaces through their atlases of texture maps. The texture map encodes the parameterization from 3D to 2D domain, rendering not only RGB values but also rasterized geometric features if necessary. Since the parameterization of texture map is not pre-determined, and depends on the surface topologies, we therefore introduce a novel cross-atlas convolution to recover the original mesh geodesic neighborhood, so as to achieve the invariance property to arbitrary parameterization. The proposed module is integrated into classification and segmentation architectures, which takes the input texture map of a mesh, and infers the output predictions. Our method not only shows competitive performances on classification and segmentation public benchmarks, but also paves the way for the broad mesh surfaces learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信