Kun Qi, Yao-Yao Xu, Xiao-Bing Deng, Lele Chen, Qin Luo, Minkang Zhou, Xiao-chun Duan, Zhongkun Hu
{"title":"原子重力仪振动校正中磁场对地震仪的影响。","authors":"Kun Qi, Yao-Yao Xu, Xiao-Bing Deng, Lele Chen, Qin Luo, Minkang Zhou, Xiao-chun Duan, Zhongkun Hu","doi":"10.1063/5.0081148","DOIUrl":null,"url":null,"abstract":"Vibration correction provides a simple and flexible method of suppressing ambient vibration noise in transportable atom gravimeters. However, in the seismometers used for vibration correction, a spurious output may be induced by the magnetic field of the magnetic-optical trap, introducing errors to the gravity measurements. This paper evaluates the influence of the magnetic field on the seismometer and the corresponding errors in the gravity measurements. It is found that an error level of order 10 μGal may be present if the seismometer is not configured carefully. The dependence of the influence on the orientation of the seismometer and the lasting time of the magnetic field are investigated. The effective suppression of the influence by shielding the seismometer is also demonstrated. Our results focus attention on the possible errors related to seismometers in high-precision gravity measurements by using atom gravimeters.","PeriodicalId":54761,"journal":{"name":"Journal of the Optical Society of America and Review of Scientific Instruments","volume":"39 1","pages":"044503"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of magnetic field on the seismometer in vibration correction for atom gravimeters.\",\"authors\":\"Kun Qi, Yao-Yao Xu, Xiao-Bing Deng, Lele Chen, Qin Luo, Minkang Zhou, Xiao-chun Duan, Zhongkun Hu\",\"doi\":\"10.1063/5.0081148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vibration correction provides a simple and flexible method of suppressing ambient vibration noise in transportable atom gravimeters. However, in the seismometers used for vibration correction, a spurious output may be induced by the magnetic field of the magnetic-optical trap, introducing errors to the gravity measurements. This paper evaluates the influence of the magnetic field on the seismometer and the corresponding errors in the gravity measurements. It is found that an error level of order 10 μGal may be present if the seismometer is not configured carefully. The dependence of the influence on the orientation of the seismometer and the lasting time of the magnetic field are investigated. The effective suppression of the influence by shielding the seismometer is also demonstrated. Our results focus attention on the possible errors related to seismometers in high-precision gravity measurements by using atom gravimeters.\",\"PeriodicalId\":54761,\"journal\":{\"name\":\"Journal of the Optical Society of America and Review of Scientific Instruments\",\"volume\":\"39 1\",\"pages\":\"044503\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Optical Society of America and Review of Scientific Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0081148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America and Review of Scientific Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0081148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of magnetic field on the seismometer in vibration correction for atom gravimeters.
Vibration correction provides a simple and flexible method of suppressing ambient vibration noise in transportable atom gravimeters. However, in the seismometers used for vibration correction, a spurious output may be induced by the magnetic field of the magnetic-optical trap, introducing errors to the gravity measurements. This paper evaluates the influence of the magnetic field on the seismometer and the corresponding errors in the gravity measurements. It is found that an error level of order 10 μGal may be present if the seismometer is not configured carefully. The dependence of the influence on the orientation of the seismometer and the lasting time of the magnetic field are investigated. The effective suppression of the influence by shielding the seismometer is also demonstrated. Our results focus attention on the possible errors related to seismometers in high-precision gravity measurements by using atom gravimeters.