一类临界情况下连续状态非线性分支过程的边界行为

Shaojuan Ma, Xu Yang, Xiaowen Zhou
{"title":"一类临界情况下连续状态非线性分支过程的边界行为","authors":"Shaojuan Ma, Xu Yang, Xiaowen Zhou","doi":"10.1214/21-ECP374","DOIUrl":null,"url":null,"abstract":"Using Foster-Lyapunov techniques we establish new conditions on non-extinction, non-explosion, coming down from infinity and staying infinite, respectively, for the general continuous-state nonlinear branching processes introduced in Li et al. (2019). These results can be applied to identify boundary behaviors for the critical cases of the above nonlinear branching processes with power rate functions driven by Brownian motion and (or) stable Poisson random measure, which was left open in Li et al. (2019). In particular, we show that even in the critical cases, a phase transition happens between coming down from infinity and staying infinite.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Boundary behaviors for a class of continuous-state nonlinear branching processes in critical cases\",\"authors\":\"Shaojuan Ma, Xu Yang, Xiaowen Zhou\",\"doi\":\"10.1214/21-ECP374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using Foster-Lyapunov techniques we establish new conditions on non-extinction, non-explosion, coming down from infinity and staying infinite, respectively, for the general continuous-state nonlinear branching processes introduced in Li et al. (2019). These results can be applied to identify boundary behaviors for the critical cases of the above nonlinear branching processes with power rate functions driven by Brownian motion and (or) stable Poisson random measure, which was left open in Li et al. (2019). In particular, we show that even in the critical cases, a phase transition happens between coming down from infinity and staying infinite.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-ECP374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-ECP374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

使用Foster-Lyapunov技术,我们分别为Li et al.(2019)中引入的一般连续状态非线性分支过程建立了非消灭、非爆炸、从无穷下降和保持无穷的新条件。这些结果可用于识别上述由布朗运动和(或)稳定泊松随机测度驱动的功率速率函数的非线性分支过程的临界情况的边界行为,Li et al.(2019)未对此进行开放。特别地,我们证明了即使在临界情况下,相变也发生在从无穷向下和保持无穷之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary behaviors for a class of continuous-state nonlinear branching processes in critical cases
Using Foster-Lyapunov techniques we establish new conditions on non-extinction, non-explosion, coming down from infinity and staying infinite, respectively, for the general continuous-state nonlinear branching processes introduced in Li et al. (2019). These results can be applied to identify boundary behaviors for the critical cases of the above nonlinear branching processes with power rate functions driven by Brownian motion and (or) stable Poisson random measure, which was left open in Li et al. (2019). In particular, we show that even in the critical cases, a phase transition happens between coming down from infinity and staying infinite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信