{"title":"城市空气质量模型与预测的可扩展信念更新","authors":"Xiuming Liu, E. Ngai, D. Zachariah","doi":"10.1145/3402903","DOIUrl":null,"url":null,"abstract":"Air pollution is one of the major concerns in global urbanization. Data science can help to understand the dynamics of air pollution and build reliable statistical models to forecast air pollution levels. To achieve these goals, one needs to learn the statistical models which can capture the dynamics from the historical data and predict air pollution in the future. Furthermore, the large size and heterogeneity of today’s big urban data pose significant challenges on the scalability and flexibility of the statistical models. In this work, we present a scalable belief updating framework that is able to produce reliable predictions, using over millions of historical hourly air pollutant and meteorology records. We also present a non-parametric approach to learn the statistical model which reveals interesting periodical dynamics and correlations of the dataset. Based on the scalable belief update framework and the non-parametric model learning approach, we propose an iterative update algorithm to accelerate Gaussian process, which is notorious for its prohibitive computation with large input data. Finally, we demonstrate how to integrate information from heterogeneous data by regarding the beliefs produced by other models as the informative prior. Numerical examples and experimental results are presented to validate the proposed method.","PeriodicalId":93404,"journal":{"name":"ACM/IMS transactions on data science","volume":"116 1","pages":"1 - 19"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable Belief Updating for Urban Air Quality Modeling and Prediction\",\"authors\":\"Xiuming Liu, E. Ngai, D. Zachariah\",\"doi\":\"10.1145/3402903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Air pollution is one of the major concerns in global urbanization. Data science can help to understand the dynamics of air pollution and build reliable statistical models to forecast air pollution levels. To achieve these goals, one needs to learn the statistical models which can capture the dynamics from the historical data and predict air pollution in the future. Furthermore, the large size and heterogeneity of today’s big urban data pose significant challenges on the scalability and flexibility of the statistical models. In this work, we present a scalable belief updating framework that is able to produce reliable predictions, using over millions of historical hourly air pollutant and meteorology records. We also present a non-parametric approach to learn the statistical model which reveals interesting periodical dynamics and correlations of the dataset. Based on the scalable belief update framework and the non-parametric model learning approach, we propose an iterative update algorithm to accelerate Gaussian process, which is notorious for its prohibitive computation with large input data. Finally, we demonstrate how to integrate information from heterogeneous data by regarding the beliefs produced by other models as the informative prior. Numerical examples and experimental results are presented to validate the proposed method.\",\"PeriodicalId\":93404,\"journal\":{\"name\":\"ACM/IMS transactions on data science\",\"volume\":\"116 1\",\"pages\":\"1 - 19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IMS transactions on data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3402903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IMS transactions on data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3402903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scalable Belief Updating for Urban Air Quality Modeling and Prediction
Air pollution is one of the major concerns in global urbanization. Data science can help to understand the dynamics of air pollution and build reliable statistical models to forecast air pollution levels. To achieve these goals, one needs to learn the statistical models which can capture the dynamics from the historical data and predict air pollution in the future. Furthermore, the large size and heterogeneity of today’s big urban data pose significant challenges on the scalability and flexibility of the statistical models. In this work, we present a scalable belief updating framework that is able to produce reliable predictions, using over millions of historical hourly air pollutant and meteorology records. We also present a non-parametric approach to learn the statistical model which reveals interesting periodical dynamics and correlations of the dataset. Based on the scalable belief update framework and the non-parametric model learning approach, we propose an iterative update algorithm to accelerate Gaussian process, which is notorious for its prohibitive computation with large input data. Finally, we demonstrate how to integrate information from heterogeneous data by regarding the beliefs produced by other models as the informative prior. Numerical examples and experimental results are presented to validate the proposed method.