正则LDPC码的协方差演化解析解

K. Sakaniwa, K. Kasai, Takayuki Nozaki
{"title":"正则LDPC码的协方差演化解析解","authors":"K. Sakaniwa, K. Kasai, Takayuki Nozaki","doi":"10.1109/ISIT.2009.5205923","DOIUrl":null,"url":null,"abstract":"The covariance evolution is a system of differential equations with respect to the covariance of the number of edges connecting to the nodes of each residual degree. Solving the covariance evolution, we can derive distributions of the number of check nodes of residual degree 1, which helps us to estimate the block error probability for finite-length LDPC code. Amraoui et al. resorted to numerical computations to solve the covariance evolution. In this paper, we give the analytical solution of the covariance evolution.","PeriodicalId":92224,"journal":{"name":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","volume":"434 1","pages":"2649-2653"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Analytical solution of covariance evolution for regular LDPC codes\",\"authors\":\"K. Sakaniwa, K. Kasai, Takayuki Nozaki\",\"doi\":\"10.1109/ISIT.2009.5205923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The covariance evolution is a system of differential equations with respect to the covariance of the number of edges connecting to the nodes of each residual degree. Solving the covariance evolution, we can derive distributions of the number of check nodes of residual degree 1, which helps us to estimate the block error probability for finite-length LDPC code. Amraoui et al. resorted to numerical computations to solve the covariance evolution. In this paper, we give the analytical solution of the covariance evolution.\",\"PeriodicalId\":92224,\"journal\":{\"name\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"volume\":\"434 1\",\"pages\":\"2649-2653\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2009.5205923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2009.5205923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

协方差演化是一个关于连接到每个残差度节点的边数的协方差的微分方程系统。通过对协方差演化的求解,得到残差度为1的校验节点数的分布,从而估计有限长度LDPC码的块错误概率。Amraoui等人通过数值计算来求解协方差演化。本文给出了协方差演化的解析解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical solution of covariance evolution for regular LDPC codes
The covariance evolution is a system of differential equations with respect to the covariance of the number of edges connecting to the nodes of each residual degree. Solving the covariance evolution, we can derive distributions of the number of check nodes of residual degree 1, which helps us to estimate the block error probability for finite-length LDPC code. Amraoui et al. resorted to numerical computations to solve the covariance evolution. In this paper, we give the analytical solution of the covariance evolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信