在堆栈溢出中检测重复项的两个改进

Yuji Mizobuchi, K. Takayama
{"title":"在堆栈溢出中检测重复项的两个改进","authors":"Yuji Mizobuchi, K. Takayama","doi":"10.1109/SANER.2017.7884678","DOIUrl":null,"url":null,"abstract":"Stack Overflow is one of the most popular question-and-answer sites for programmers. However, there are a great number of duplicate questions that are expected to be detected automatically in a short time. In this paper, we introduce two approaches to improve the detection accuracy: splitting body into different types of data and using word-embedding to treat word ambiguities that are not contained in the general corpuses. The evaluation shows that these approaches improve the accuracy compared with the traditional method.","PeriodicalId":6541,"journal":{"name":"2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"52 1","pages":"563-564"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Two improvements to detect duplicates in Stack Overflow\",\"authors\":\"Yuji Mizobuchi, K. Takayama\",\"doi\":\"10.1109/SANER.2017.7884678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stack Overflow is one of the most popular question-and-answer sites for programmers. However, there are a great number of duplicate questions that are expected to be detected automatically in a short time. In this paper, we introduce two approaches to improve the detection accuracy: splitting body into different types of data and using word-embedding to treat word ambiguities that are not contained in the general corpuses. The evaluation shows that these approaches improve the accuracy compared with the traditional method.\",\"PeriodicalId\":6541,\"journal\":{\"name\":\"2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"volume\":\"52 1\",\"pages\":\"563-564\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SANER.2017.7884678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SANER.2017.7884678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

Stack Overflow是最受程序员欢迎的问答网站之一。然而,有大量的重复问题需要在短时间内被自动检测出来。本文介绍了两种提高检测精度的方法:将正文分成不同类型的数据和使用词嵌入来处理一般语料库中不包含的词歧义。评价表明,与传统方法相比,这些方法提高了精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two improvements to detect duplicates in Stack Overflow
Stack Overflow is one of the most popular question-and-answer sites for programmers. However, there are a great number of duplicate questions that are expected to be detected automatically in a short time. In this paper, we introduce two approaches to improve the detection accuracy: splitting body into different types of data and using word-embedding to treat word ambiguities that are not contained in the general corpuses. The evaluation shows that these approaches improve the accuracy compared with the traditional method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信