{"title":"采用空间复用的移动多分组网络的捕获分析:一种替代研究","authors":"F. Babich, M. Comisso","doi":"10.1109/GLOCOM.2014.7037346","DOIUrl":null,"url":null,"abstract":"This paper presents an approximated, but accurate and fast to compute, mathematical framework for evaluating the capture probability and the number of sustainable communications in a mobile wireless network where spatial reuse enables the coexistence of multiple traffic flows. The proposed study focuses on a particular multi-packet approach, known as multi-packet communication, in which different communicating pairs are simultaneously active. Within this context, the statistics of the received power, of the interference power, and of the signal-to-interference ratio are derived accounting for the antenna system and the network topology in the presence of Nakagami fading. The theoretical results, which are validated by independent Monte Carlo simulations, are used to discuss the impact of mobility on the result of each transmission attempt. The purpose of the developed theory is to provide an alternative analysis, including the spatial domain, for modeling the capture probability and the number of concurrent peer-to-peer communications that can be sustained in a mobile ad-hoc network.","PeriodicalId":6492,"journal":{"name":"2014 IEEE Global Communications Conference","volume":"29 1","pages":"3477-3482"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Capture analysis of mobile multi-packet networks adopting spatial reuse: An alternative study\",\"authors\":\"F. Babich, M. Comisso\",\"doi\":\"10.1109/GLOCOM.2014.7037346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approximated, but accurate and fast to compute, mathematical framework for evaluating the capture probability and the number of sustainable communications in a mobile wireless network where spatial reuse enables the coexistence of multiple traffic flows. The proposed study focuses on a particular multi-packet approach, known as multi-packet communication, in which different communicating pairs are simultaneously active. Within this context, the statistics of the received power, of the interference power, and of the signal-to-interference ratio are derived accounting for the antenna system and the network topology in the presence of Nakagami fading. The theoretical results, which are validated by independent Monte Carlo simulations, are used to discuss the impact of mobility on the result of each transmission attempt. The purpose of the developed theory is to provide an alternative analysis, including the spatial domain, for modeling the capture probability and the number of concurrent peer-to-peer communications that can be sustained in a mobile ad-hoc network.\",\"PeriodicalId\":6492,\"journal\":{\"name\":\"2014 IEEE Global Communications Conference\",\"volume\":\"29 1\",\"pages\":\"3477-3482\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOM.2014.7037346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2014.7037346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Capture analysis of mobile multi-packet networks adopting spatial reuse: An alternative study
This paper presents an approximated, but accurate and fast to compute, mathematical framework for evaluating the capture probability and the number of sustainable communications in a mobile wireless network where spatial reuse enables the coexistence of multiple traffic flows. The proposed study focuses on a particular multi-packet approach, known as multi-packet communication, in which different communicating pairs are simultaneously active. Within this context, the statistics of the received power, of the interference power, and of the signal-to-interference ratio are derived accounting for the antenna system and the network topology in the presence of Nakagami fading. The theoretical results, which are validated by independent Monte Carlo simulations, are used to discuss the impact of mobility on the result of each transmission attempt. The purpose of the developed theory is to provide an alternative analysis, including the spatial domain, for modeling the capture probability and the number of concurrent peer-to-peer communications that can be sustained in a mobile ad-hoc network.