一种带时间放大相频检测器的25.8GHz整数n锁相环,具有60fsrms的抖动,-252.8dB的FoMJ和稳健的锁捕获性能

Xinlin Geng, Yibo Tian, Yao Xiao, Zonglin Ye, Qian Xie, Zheng Wang
{"title":"一种带时间放大相频检测器的25.8GHz整数n锁相环,具有60fsrms的抖动,-252.8dB的FoMJ和稳健的锁捕获性能","authors":"Xinlin Geng, Yibo Tian, Yao Xiao, Zonglin Ye, Qian Xie, Zheng Wang","doi":"10.1109/ISSCC42614.2022.9731578","DOIUrl":null,"url":null,"abstract":"With the rapid development of the modern communication technology, the communication standards impose stringent performance requirements, such as the ultra-low jitter requirement, on the phase-locked-loop (PLL) frequency synthesizers. As one of the widest-employed PLL structures, a charge-pump PLL (CPPLL) with a phase-frequency detector (PFD) is known for its excellent robust lock-acquisition performance due to the capability to detect phase and frequency error simultaneously. Recent research exhibited the great potential of the CPPLLs to achieve sub-100fsrms jitter [1]. However, a large current CP is adopted in [1] to minimize CP noise at the cost of high-power consumption. In this work, a 25.8GHz PLL with a time-amplifying phase-frequency detector (TAPFD) is implemented to suppress the CP noise by the high phase-error detection gain of the TAPFD and maintain the robust acquisition ability concurrently. The prototype is measured to achieve 60fsrms jitter and -252.8dB FoMJ.","PeriodicalId":6830,"journal":{"name":"2022 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"79 1","pages":"388-390"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A 25.8GHz Integer-N PLL With Time-Amplifying Phase-Frequency Detector Achieving 60fsrms Jitter, -252.8dB FoMJ, and Robust Lock Acquisition Performance\",\"authors\":\"Xinlin Geng, Yibo Tian, Yao Xiao, Zonglin Ye, Qian Xie, Zheng Wang\",\"doi\":\"10.1109/ISSCC42614.2022.9731578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of the modern communication technology, the communication standards impose stringent performance requirements, such as the ultra-low jitter requirement, on the phase-locked-loop (PLL) frequency synthesizers. As one of the widest-employed PLL structures, a charge-pump PLL (CPPLL) with a phase-frequency detector (PFD) is known for its excellent robust lock-acquisition performance due to the capability to detect phase and frequency error simultaneously. Recent research exhibited the great potential of the CPPLLs to achieve sub-100fsrms jitter [1]. However, a large current CP is adopted in [1] to minimize CP noise at the cost of high-power consumption. In this work, a 25.8GHz PLL with a time-amplifying phase-frequency detector (TAPFD) is implemented to suppress the CP noise by the high phase-error detection gain of the TAPFD and maintain the robust acquisition ability concurrently. The prototype is measured to achieve 60fsrms jitter and -252.8dB FoMJ.\",\"PeriodicalId\":6830,\"journal\":{\"name\":\"2022 IEEE International Solid- State Circuits Conference (ISSCC)\",\"volume\":\"79 1\",\"pages\":\"388-390\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Solid- State Circuits Conference (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC42614.2022.9731578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42614.2022.9731578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

随着现代通信技术的飞速发展,通信标准对锁相环频率合成器提出了超低抖动等严格的性能要求。作为应用最广泛的锁相环结构之一,带相频检测器(PFD)的电荷泵锁相环(CPPLL)由于能够同时检测相位和频率误差而具有出色的鲁棒锁获取性能。最近的研究表明,cppll具有实现100fsrms以下抖动的巨大潜力[1]。但文献[1]采用大电流CP,以高功耗为代价使CP噪声最小化。本文设计了一种带时间放大相频检测器(TAPFD)的25.8GHz锁相环,利用TAPFD的高相位误差检测增益抑制CP噪声,同时保持其鲁棒采集能力。经测量,样机抖动达到60fsrms, fj -252.8dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 25.8GHz Integer-N PLL With Time-Amplifying Phase-Frequency Detector Achieving 60fsrms Jitter, -252.8dB FoMJ, and Robust Lock Acquisition Performance
With the rapid development of the modern communication technology, the communication standards impose stringent performance requirements, such as the ultra-low jitter requirement, on the phase-locked-loop (PLL) frequency synthesizers. As one of the widest-employed PLL structures, a charge-pump PLL (CPPLL) with a phase-frequency detector (PFD) is known for its excellent robust lock-acquisition performance due to the capability to detect phase and frequency error simultaneously. Recent research exhibited the great potential of the CPPLLs to achieve sub-100fsrms jitter [1]. However, a large current CP is adopted in [1] to minimize CP noise at the cost of high-power consumption. In this work, a 25.8GHz PLL with a time-amplifying phase-frequency detector (TAPFD) is implemented to suppress the CP noise by the high phase-error detection gain of the TAPFD and maintain the robust acquisition ability concurrently. The prototype is measured to achieve 60fsrms jitter and -252.8dB FoMJ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信