基于情感挖掘和双元图分析的YouTube视频推荐社交媒体数据分析

Inf. Comput. Pub Date : 2023-07-16 DOI:10.3390/info14070408
Ken McGarry
{"title":"基于情感挖掘和双元图分析的YouTube视频推荐社交媒体数据分析","authors":"Ken McGarry","doi":"10.3390/info14070408","DOIUrl":null,"url":null,"abstract":"In this work we combine sentiment analysis with graph theory to analyze user posts, likes/dislikes on a variety of social media to provide recommendations for YouTube videos. We focus on the topic of climate change/global warming, which has caused much alarm and controversy over recent years. Our intention is to recommend informative YouTube videos to those seeking a balanced viewpoint of this area and the key arguments/issues. To this end we analyze Twitter data; Reddit comments and posts; user comments, view statistics and likes/dislikes of YouTube videos. The combination of sentiment analysis with raw statistics and linking users with their posts gives deeper insights into their needs and quest for quality information. Sentiment analysis provides the insights into user likes and dislikes, graph theory provides the linkage patterns and relationships between users, posts, and sentiment.","PeriodicalId":13622,"journal":{"name":"Inf. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing Social Media Data Using Sentiment Mining and Bigram Analysis for the Recommendation of YouTube Videos\",\"authors\":\"Ken McGarry\",\"doi\":\"10.3390/info14070408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we combine sentiment analysis with graph theory to analyze user posts, likes/dislikes on a variety of social media to provide recommendations for YouTube videos. We focus on the topic of climate change/global warming, which has caused much alarm and controversy over recent years. Our intention is to recommend informative YouTube videos to those seeking a balanced viewpoint of this area and the key arguments/issues. To this end we analyze Twitter data; Reddit comments and posts; user comments, view statistics and likes/dislikes of YouTube videos. The combination of sentiment analysis with raw statistics and linking users with their posts gives deeper insights into their needs and quest for quality information. Sentiment analysis provides the insights into user likes and dislikes, graph theory provides the linkage patterns and relationships between users, posts, and sentiment.\",\"PeriodicalId\":13622,\"journal\":{\"name\":\"Inf. Comput.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/info14070408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14070408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们将情感分析与图论结合起来,分析各种社交媒体上的用户帖子,喜欢/不喜欢,为YouTube视频提供推荐。我们关注的是气候变化/全球变暖这个话题,这个话题近年来引起了很多恐慌和争议。我们的目的是向那些寻求这一领域和关键论点/问题的平衡观点的人推荐信息丰富的YouTube视频。为此,我们分析Twitter数据;Reddit评论和帖子;用户评论,查看统计和喜欢/不喜欢的YouTube视频。将情感分析与原始统计数据相结合,并将用户与他们的帖子链接起来,可以更深入地了解他们的需求和对高质量信息的追求。情感分析提供了对用户喜欢和不喜欢的洞察,图论提供了用户、帖子和情感之间的联系模式和关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing Social Media Data Using Sentiment Mining and Bigram Analysis for the Recommendation of YouTube Videos
In this work we combine sentiment analysis with graph theory to analyze user posts, likes/dislikes on a variety of social media to provide recommendations for YouTube videos. We focus on the topic of climate change/global warming, which has caused much alarm and controversy over recent years. Our intention is to recommend informative YouTube videos to those seeking a balanced viewpoint of this area and the key arguments/issues. To this end we analyze Twitter data; Reddit comments and posts; user comments, view statistics and likes/dislikes of YouTube videos. The combination of sentiment analysis with raw statistics and linking users with their posts gives deeper insights into their needs and quest for quality information. Sentiment analysis provides the insights into user likes and dislikes, graph theory provides the linkage patterns and relationships between users, posts, and sentiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信