h -对称导数下区间值多目标函数的Fritz John最优性条件

Sachin Rastogi, Akhlad Iqbal, Sanjeev Rajan
{"title":"h -对称导数下区间值多目标函数的Fritz John最优性条件","authors":"Sachin Rastogi, Akhlad Iqbal, Sanjeev Rajan","doi":"10.1142/S0217595921500299","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the concept and applications of gH-symmetrical derivative for interval-valued multi-objective functions, which is the generalization of generalized Hukuhara derivative (gH-derivative). By a suitable example it has been shown that gH-symmetrically derivative is an extension of gH-derivative. Furthermore, we apply this new derivative to investigate the Fritz John type optimality conditions for interval-valued multiobjective programming problems. We use LR type of order relation in this context.","PeriodicalId":8478,"journal":{"name":"Asia Pac. J. Oper. Res.","volume":"90 1","pages":"2150029:1-2150029:15"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fritz John Optimality Conditions for Interval-Valued Multi-Objective Functions Using gH-Symmetrical Derivative\",\"authors\":\"Sachin Rastogi, Akhlad Iqbal, Sanjeev Rajan\",\"doi\":\"10.1142/S0217595921500299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the concept and applications of gH-symmetrical derivative for interval-valued multi-objective functions, which is the generalization of generalized Hukuhara derivative (gH-derivative). By a suitable example it has been shown that gH-symmetrically derivative is an extension of gH-derivative. Furthermore, we apply this new derivative to investigate the Fritz John type optimality conditions for interval-valued multiobjective programming problems. We use LR type of order relation in this context.\",\"PeriodicalId\":8478,\"journal\":{\"name\":\"Asia Pac. J. Oper. Res.\",\"volume\":\"90 1\",\"pages\":\"2150029:1-2150029:15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia Pac. J. Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0217595921500299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pac. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217595921500299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了区间值多目标函数的h -对称导数的概念及其应用,它是广义Hukuhara导数(gh -导数)的推广。通过一个适当的例子证明了h -对称导数是h -导数的推广。进一步,我们应用这个新导数研究了区间值多目标规划问题的Fritz John型最优性条件。在这种情况下,我们使用LR类型的顺序关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fritz John Optimality Conditions for Interval-Valued Multi-Objective Functions Using gH-Symmetrical Derivative
In this paper, we introduce the concept and applications of gH-symmetrical derivative for interval-valued multi-objective functions, which is the generalization of generalized Hukuhara derivative (gH-derivative). By a suitable example it has been shown that gH-symmetrically derivative is an extension of gH-derivative. Furthermore, we apply this new derivative to investigate the Fritz John type optimality conditions for interval-valued multiobjective programming problems. We use LR type of order relation in this context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信