基于拉普拉斯-贝尔特拉米节点分割和表面固有测地线曲率流的自动胼胝体提取

Rongjie Lai, Yonggang Shi, N. Sicotte, A. Toga
{"title":"基于拉普拉斯-贝尔特拉米节点分割和表面固有测地线曲率流的自动胼胝体提取","authors":"Rongjie Lai, Yonggang Shi, N. Sicotte, A. Toga","doi":"10.1109/ICCV.2011.6126476","DOIUrl":null,"url":null,"abstract":"Corpus callosum (CC) is an important structure in human brain anatomy. In this work, we propose a fully automated and robust approach to extract corpus callosum from T1-weighted structural MR images. The novelty of our method is composed of two key steps. In the first step, we find an initial guess for the curve representation of CC by using the zero level set of the first nontrivial Laplace-Beltrami (LB) eigenfunction on the white matter surface. In the second step, the initial curve is deformed toward the final solution with a geodesic curvature flow on the white matter surface. For numerical solution of the geodesic curvature flow on surfaces, we represent the contour implicitly on a triangular mesh and develop efficient numerical schemes based on finite element method. Because our method depends only on the intrinsic geometry of the white matter surface, it is robust to orientation differences of the brain across population. In our experiments, we validate the proposed algorithm on 32 brains from a clinical study of multiple sclerosis disease and demonstrate that the accuracy of our results.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"401 1","pages":"2034-2040"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Automated corpus callosum extraction via Laplace-Beltrami nodal parcellation and intrinsic geodesic curvature flows on surfaces\",\"authors\":\"Rongjie Lai, Yonggang Shi, N. Sicotte, A. Toga\",\"doi\":\"10.1109/ICCV.2011.6126476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Corpus callosum (CC) is an important structure in human brain anatomy. In this work, we propose a fully automated and robust approach to extract corpus callosum from T1-weighted structural MR images. The novelty of our method is composed of two key steps. In the first step, we find an initial guess for the curve representation of CC by using the zero level set of the first nontrivial Laplace-Beltrami (LB) eigenfunction on the white matter surface. In the second step, the initial curve is deformed toward the final solution with a geodesic curvature flow on the white matter surface. For numerical solution of the geodesic curvature flow on surfaces, we represent the contour implicitly on a triangular mesh and develop efficient numerical schemes based on finite element method. Because our method depends only on the intrinsic geometry of the white matter surface, it is robust to orientation differences of the brain across population. In our experiments, we validate the proposed algorithm on 32 brains from a clinical study of multiple sclerosis disease and demonstrate that the accuracy of our results.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":\"401 1\",\"pages\":\"2034-2040\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

胼胝体(CC)是人脑解剖学中的一个重要结构。在这项工作中,我们提出了一种完全自动化和健壮的方法来从t1加权结构MR图像中提取胼胝体。我们的方法的新颖性由两个关键步骤组成。在第一步中,我们利用白质表面上的第一个非平凡拉普拉斯-贝尔特拉米(LB)特征函数的零水平集对CC的曲线表示进行了初步猜测。在第二步中,初始曲线在白质表面以测地线曲率流向最终解变形。对于曲面上测地线曲率流的数值解,我们采用三角网格隐式表示曲面轮廓,并基于有限元法开发了有效的数值格式。由于我们的方法仅依赖于白质表面的固有几何形状,因此它对不同人群的大脑方向差异具有鲁棒性。在我们的实验中,我们在来自多发性硬化症临床研究的32个大脑上验证了所提出的算法,并证明了我们结果的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated corpus callosum extraction via Laplace-Beltrami nodal parcellation and intrinsic geodesic curvature flows on surfaces
Corpus callosum (CC) is an important structure in human brain anatomy. In this work, we propose a fully automated and robust approach to extract corpus callosum from T1-weighted structural MR images. The novelty of our method is composed of two key steps. In the first step, we find an initial guess for the curve representation of CC by using the zero level set of the first nontrivial Laplace-Beltrami (LB) eigenfunction on the white matter surface. In the second step, the initial curve is deformed toward the final solution with a geodesic curvature flow on the white matter surface. For numerical solution of the geodesic curvature flow on surfaces, we represent the contour implicitly on a triangular mesh and develop efficient numerical schemes based on finite element method. Because our method depends only on the intrinsic geometry of the white matter surface, it is robust to orientation differences of the brain across population. In our experiments, we validate the proposed algorithm on 32 brains from a clinical study of multiple sclerosis disease and demonstrate that the accuracy of our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信