使用曲率点的自动脑束图分割

Vedang Patel, Anand Parmar, A. Bhavsar, A. Nigam
{"title":"使用曲率点的自动脑束图分割","authors":"Vedang Patel, Anand Parmar, A. Bhavsar, A. Nigam","doi":"10.1145/3009977.3010013","DOIUrl":null,"url":null,"abstract":"Classification of brain fiber tracts is an important problem in brain tractography analysis. We propose a supervised algorithm which learns features for anatomically meaningful fiber clusters, from labeled DTI white matter data. The classification is performed at two levels: a) Grey vs White matter (macro level) and b) White matter clusters (micro level). Our approach focuses on high curvature points in the fiber tracts, which embodies the unique characteristics of the respective classes. Any test fiber is classified into one of these learned classes by comparing proximity using the learned curvature-point model (for micro level) and with a neural network classifier (at macro level). The proposed algorithm has been validated with brain DTI data for three subjects containing about 2,50,000 fibers per subject, and is shown to yield high classification accuracy (> 93%) at both macro and micro levels.","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"25 1","pages":"18:1-18:6"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Automated brain tractography segmentation using curvature points\",\"authors\":\"Vedang Patel, Anand Parmar, A. Bhavsar, A. Nigam\",\"doi\":\"10.1145/3009977.3010013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification of brain fiber tracts is an important problem in brain tractography analysis. We propose a supervised algorithm which learns features for anatomically meaningful fiber clusters, from labeled DTI white matter data. The classification is performed at two levels: a) Grey vs White matter (macro level) and b) White matter clusters (micro level). Our approach focuses on high curvature points in the fiber tracts, which embodies the unique characteristics of the respective classes. Any test fiber is classified into one of these learned classes by comparing proximity using the learned curvature-point model (for micro level) and with a neural network classifier (at macro level). The proposed algorithm has been validated with brain DTI data for three subjects containing about 2,50,000 fibers per subject, and is shown to yield high classification accuracy (> 93%) at both macro and micro levels.\",\"PeriodicalId\":93806,\"journal\":{\"name\":\"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing\",\"volume\":\"25 1\",\"pages\":\"18:1-18:6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3009977.3010013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009977.3010013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

脑纤维束的分类是脑纤维束分析中的一个重要问题。我们提出了一种监督算法,该算法从标记的DTI白质数据中学习解剖学上有意义的纤维簇的特征。分类分为两个层面:a)灰质vs白质(宏观层面)和b)白质簇(微观层面)。我们的方法侧重于纤维束中的高曲率点,这体现了各自类别的独特特征。通过使用学习的曲率点模型(微观层面)和神经网络分类器(宏观层面)比较接近度,将任何测试纤维分类到这些学习类之一。该算法已在三个受试者的大脑DTI数据中进行了验证,每个受试者约含有25万个纤维,并且在宏观和微观层面上都显示出较高的分类准确率(> 93%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated brain tractography segmentation using curvature points
Classification of brain fiber tracts is an important problem in brain tractography analysis. We propose a supervised algorithm which learns features for anatomically meaningful fiber clusters, from labeled DTI white matter data. The classification is performed at two levels: a) Grey vs White matter (macro level) and b) White matter clusters (micro level). Our approach focuses on high curvature points in the fiber tracts, which embodies the unique characteristics of the respective classes. Any test fiber is classified into one of these learned classes by comparing proximity using the learned curvature-point model (for micro level) and with a neural network classifier (at macro level). The proposed algorithm has been validated with brain DTI data for three subjects containing about 2,50,000 fibers per subject, and is shown to yield high classification accuracy (> 93%) at both macro and micro levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信