A. Koutinas, Theano Petsi, Sissy Panitsa, M. Kanellaki
{"title":"新型光学生物传感器技术发展中的固定化细胞生物反应器产业化","authors":"A. Koutinas, Theano Petsi, Sissy Panitsa, M. Kanellaki","doi":"10.33696/nanotechnol.4.044","DOIUrl":null,"url":null,"abstract":"This commentary shows the development of a new optical biosensor, based on cell immobilization of Pseudomonas Fluorescens HK44, in nano and micro-tubular cellulose (TC) and a mixture of carbohydrate nanotubes (CHNTs) and carbohydrate micro-tubes (CHMTs). Methodology follows, this biocatalyst can be industrialized with the use of a single tank immobilized cell bioreactor (ICB). A techno-economic analysis was conducted within the framework of it by designing a process flow sheet with mass and energy balance. According to its case study, the investment is 227,800 euros, and the daily production cost is 1434 euros, with a maximum daily added value of 25,000 euros. The discussion revealed that novel research proposals and a novel study concept are being developed in the field of biosensors. The results are supported by papers published on ICB area development. The problem that leads to this commentary is industrialization of ICB, in the case of a simple biosensor development using immobilized cells and it is the objective.","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immobilized Cell Bioreactor Industrialization in the Development of an Innovative Optical Biosensor Technology\",\"authors\":\"A. Koutinas, Theano Petsi, Sissy Panitsa, M. Kanellaki\",\"doi\":\"10.33696/nanotechnol.4.044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This commentary shows the development of a new optical biosensor, based on cell immobilization of Pseudomonas Fluorescens HK44, in nano and micro-tubular cellulose (TC) and a mixture of carbohydrate nanotubes (CHNTs) and carbohydrate micro-tubes (CHMTs). Methodology follows, this biocatalyst can be industrialized with the use of a single tank immobilized cell bioreactor (ICB). A techno-economic analysis was conducted within the framework of it by designing a process flow sheet with mass and energy balance. According to its case study, the investment is 227,800 euros, and the daily production cost is 1434 euros, with a maximum daily added value of 25,000 euros. The discussion revealed that novel research proposals and a novel study concept are being developed in the field of biosensors. The results are supported by papers published on ICB area development. The problem that leads to this commentary is industrialization of ICB, in the case of a simple biosensor development using immobilized cells and it is the objective.\",\"PeriodicalId\":94095,\"journal\":{\"name\":\"Journal of nanotechnology and nanomaterials\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nanotechnology and nanomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33696/nanotechnol.4.044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanotechnology and nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33696/nanotechnol.4.044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Immobilized Cell Bioreactor Industrialization in the Development of an Innovative Optical Biosensor Technology
This commentary shows the development of a new optical biosensor, based on cell immobilization of Pseudomonas Fluorescens HK44, in nano and micro-tubular cellulose (TC) and a mixture of carbohydrate nanotubes (CHNTs) and carbohydrate micro-tubes (CHMTs). Methodology follows, this biocatalyst can be industrialized with the use of a single tank immobilized cell bioreactor (ICB). A techno-economic analysis was conducted within the framework of it by designing a process flow sheet with mass and energy balance. According to its case study, the investment is 227,800 euros, and the daily production cost is 1434 euros, with a maximum daily added value of 25,000 euros. The discussion revealed that novel research proposals and a novel study concept are being developed in the field of biosensors. The results are supported by papers published on ICB area development. The problem that leads to this commentary is industrialization of ICB, in the case of a simple biosensor development using immobilized cells and it is the objective.