Hyun-Woo Han, Jung-Su Han, W. Chung, Ji-Tae Kim, Young-Jun Park
{"title":"基于多体动力学仿真的拖拉机动力换挡同步时间预测","authors":"Hyun-Woo Han, Jung-Su Han, W. Chung, Ji-Tae Kim, Young-Jun Park","doi":"10.13031/trans.14233","DOIUrl":null,"url":null,"abstract":"HighlightsPrediction of synchronization time was performed for a power-shift transmission.We derived an analytical equation for synchronization time and developed a multi-body dynamics model.Model results were compared with results of a power-shift test on a synchronizer.Reduced computation and design time was achieved for automatic transmission design.Abstract. Synchronization time determines the capacity of a shift actuator for an automatic transmission system. Existing approaches for measuring this time only consider one rotational inertia and therefore cannot be applied to the power-shift transmission (PST) of a tractor with wet multi-plate clutches on both sides of the synchronizer. This study aims to predict the PST synchronization time by considering time-varying axial forces as first-order functions and the equivalent rotational inertias of the hub and the gear. First, we derive an analytical equation for the synchronization time. We then develop a multi-body dynamics (MBD) model that includes the drag torque of the wet multi-plate clutches. The MBD model is composed of a synchronizer, a linkage, and an output shaft of a shift actuator as a rigid-body system. A power-shift test was performed on the synchronizer at two shift stages requiring the maximum shift force of the system. The torque of the shift actuator (the input of the shift system) and the angular displacement of the output shaft of the shift actuator (the output of the shift system) were measured. The results of the simulation model were then compared with those of the shift test. Compared with the test results, the simulation results were validated within 7.63% accuracy, based on the maximum value for the torque of the shift actuator. The proposed equation was validated within a maximum error range of 8.25%. The proposed equation did not consider drag torque of the wet multi-plate clutches because that torque is much smaller than the cone torque of the synchronizer in the target shift system. The proposed equation can reduce computation time and will enable more precise sizing of the synchronizer and shift actuator in the early design stages of automatic transmissions. Keywords: Multi-body dynamics, Power-shift transmission, Synchronization time, Synchronizer, Tractor transmission.","PeriodicalId":23120,"journal":{"name":"Transactions of the ASABE","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Prediction of Synchronization Time for Tractor Power-Shift Transmission Using Multi-Body Dynamic Simulation\",\"authors\":\"Hyun-Woo Han, Jung-Su Han, W. Chung, Ji-Tae Kim, Young-Jun Park\",\"doi\":\"10.13031/trans.14233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"HighlightsPrediction of synchronization time was performed for a power-shift transmission.We derived an analytical equation for synchronization time and developed a multi-body dynamics model.Model results were compared with results of a power-shift test on a synchronizer.Reduced computation and design time was achieved for automatic transmission design.Abstract. Synchronization time determines the capacity of a shift actuator for an automatic transmission system. Existing approaches for measuring this time only consider one rotational inertia and therefore cannot be applied to the power-shift transmission (PST) of a tractor with wet multi-plate clutches on both sides of the synchronizer. This study aims to predict the PST synchronization time by considering time-varying axial forces as first-order functions and the equivalent rotational inertias of the hub and the gear. First, we derive an analytical equation for the synchronization time. We then develop a multi-body dynamics (MBD) model that includes the drag torque of the wet multi-plate clutches. The MBD model is composed of a synchronizer, a linkage, and an output shaft of a shift actuator as a rigid-body system. A power-shift test was performed on the synchronizer at two shift stages requiring the maximum shift force of the system. The torque of the shift actuator (the input of the shift system) and the angular displacement of the output shaft of the shift actuator (the output of the shift system) were measured. The results of the simulation model were then compared with those of the shift test. Compared with the test results, the simulation results were validated within 7.63% accuracy, based on the maximum value for the torque of the shift actuator. The proposed equation was validated within a maximum error range of 8.25%. The proposed equation did not consider drag torque of the wet multi-plate clutches because that torque is much smaller than the cone torque of the synchronizer in the target shift system. The proposed equation can reduce computation time and will enable more precise sizing of the synchronizer and shift actuator in the early design stages of automatic transmissions. Keywords: Multi-body dynamics, Power-shift transmission, Synchronization time, Synchronizer, Tractor transmission.\",\"PeriodicalId\":23120,\"journal\":{\"name\":\"Transactions of the ASABE\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the ASABE\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.13031/trans.14233\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the ASABE","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.13031/trans.14233","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Prediction of Synchronization Time for Tractor Power-Shift Transmission Using Multi-Body Dynamic Simulation
HighlightsPrediction of synchronization time was performed for a power-shift transmission.We derived an analytical equation for synchronization time and developed a multi-body dynamics model.Model results were compared with results of a power-shift test on a synchronizer.Reduced computation and design time was achieved for automatic transmission design.Abstract. Synchronization time determines the capacity of a shift actuator for an automatic transmission system. Existing approaches for measuring this time only consider one rotational inertia and therefore cannot be applied to the power-shift transmission (PST) of a tractor with wet multi-plate clutches on both sides of the synchronizer. This study aims to predict the PST synchronization time by considering time-varying axial forces as first-order functions and the equivalent rotational inertias of the hub and the gear. First, we derive an analytical equation for the synchronization time. We then develop a multi-body dynamics (MBD) model that includes the drag torque of the wet multi-plate clutches. The MBD model is composed of a synchronizer, a linkage, and an output shaft of a shift actuator as a rigid-body system. A power-shift test was performed on the synchronizer at two shift stages requiring the maximum shift force of the system. The torque of the shift actuator (the input of the shift system) and the angular displacement of the output shaft of the shift actuator (the output of the shift system) were measured. The results of the simulation model were then compared with those of the shift test. Compared with the test results, the simulation results were validated within 7.63% accuracy, based on the maximum value for the torque of the shift actuator. The proposed equation was validated within a maximum error range of 8.25%. The proposed equation did not consider drag torque of the wet multi-plate clutches because that torque is much smaller than the cone torque of the synchronizer in the target shift system. The proposed equation can reduce computation time and will enable more precise sizing of the synchronizer and shift actuator in the early design stages of automatic transmissions. Keywords: Multi-body dynamics, Power-shift transmission, Synchronization time, Synchronizer, Tractor transmission.
期刊介绍:
This peer-reviewed journal publishes research that advances the engineering of agricultural, food, and biological systems. Submissions must include original data, analysis or design, or synthesis of existing information; research information for the improvement of education, design, construction, or manufacturing practice; or significant and convincing evidence that confirms and strengthens the findings of others or that revises ideas or challenges accepted theory.