{"title":"经典模糊c均值(FCM)的鲁棒性","authors":"B. I. Nasution, R. Kurniawan","doi":"10.1109/ICOIACT.2018.8350729","DOIUrl":null,"url":null,"abstract":"Classical Fuzzy C-Means (FCM) was believed as a robust clustering method when it is optimized and modified. But, at this time many researchers stated that classical FCM is less robust. So this study aims to investigate and prove the robustness of FCM by conducting studies into several data sets and optimization methods and modifications. The results show that FCM is a robust-proven method when viewed from the value of the objective function, the number of iterations, and the time being completed.","PeriodicalId":6660,"journal":{"name":"2018 International Conference on Information and Communications Technology (ICOIACT)","volume":"11 1","pages":"321-325"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Robustness of classical fuzzy C-means (FCM)\",\"authors\":\"B. I. Nasution, R. Kurniawan\",\"doi\":\"10.1109/ICOIACT.2018.8350729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical Fuzzy C-Means (FCM) was believed as a robust clustering method when it is optimized and modified. But, at this time many researchers stated that classical FCM is less robust. So this study aims to investigate and prove the robustness of FCM by conducting studies into several data sets and optimization methods and modifications. The results show that FCM is a robust-proven method when viewed from the value of the objective function, the number of iterations, and the time being completed.\",\"PeriodicalId\":6660,\"journal\":{\"name\":\"2018 International Conference on Information and Communications Technology (ICOIACT)\",\"volume\":\"11 1\",\"pages\":\"321-325\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Information and Communications Technology (ICOIACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIACT.2018.8350729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Communications Technology (ICOIACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIACT.2018.8350729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classical Fuzzy C-Means (FCM) was believed as a robust clustering method when it is optimized and modified. But, at this time many researchers stated that classical FCM is less robust. So this study aims to investigate and prove the robustness of FCM by conducting studies into several data sets and optimization methods and modifications. The results show that FCM is a robust-proven method when viewed from the value of the objective function, the number of iterations, and the time being completed.