{"title":"直接甲烷燃料电池用铜、碱土金属氧化物、硼和钙钛矿改性镍金属陶瓷阳极的性能研究","authors":"A. Chien, E. Lin, Nicole J. Ye","doi":"10.21926/JEPT.2102024","DOIUrl":null,"url":null,"abstract":"The metallic copper, alkaline earth metal oxide, boron, and perovskite were incorporated on the surface of a Ni-cermet anode, and the performance of the modified Solid Oxide Fuel Cell (SOFC) anode was evaluated. The cell performance was analyzed by voltage-current characteristics (V-I curve) and H2-CH4 step reactions (P-t curve) in a potentiostatic mode. Besides, we also determined if a metallic phase or high electronic conductivity of the anode is important for a cell to perform well when H2 is used as a fuel, whereas both conductivity and anti-coking capability are critical while using CH4 as a fuel. The results showed that the anodes containing magnesium oxide (MgO), lanthanum strontium titanate (La0.4Sr0.4TiO3−γ), and boron were relatively resistant to the degradation in the CH4 environment when compared with others. The underlying mechanism varied mainly with electronic and structural promotion by the dopants as well as their material compatibility with the Ni-cermet substrate. These findings were evidenced and supported by surface analysis as well as in-situ infrared and mass spectroscopic studies too.","PeriodicalId":53427,"journal":{"name":"Journal of Nuclear Energy Science and Power Generation Technology","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Investigation of a Nickel Cermet Anode Modified with Copper, Alkaline Earth Metal Oxide, Boron, and Perovskite for Direct Methane Fuel Cell\",\"authors\":\"A. Chien, E. Lin, Nicole J. Ye\",\"doi\":\"10.21926/JEPT.2102024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The metallic copper, alkaline earth metal oxide, boron, and perovskite were incorporated on the surface of a Ni-cermet anode, and the performance of the modified Solid Oxide Fuel Cell (SOFC) anode was evaluated. The cell performance was analyzed by voltage-current characteristics (V-I curve) and H2-CH4 step reactions (P-t curve) in a potentiostatic mode. Besides, we also determined if a metallic phase or high electronic conductivity of the anode is important for a cell to perform well when H2 is used as a fuel, whereas both conductivity and anti-coking capability are critical while using CH4 as a fuel. The results showed that the anodes containing magnesium oxide (MgO), lanthanum strontium titanate (La0.4Sr0.4TiO3−γ), and boron were relatively resistant to the degradation in the CH4 environment when compared with others. The underlying mechanism varied mainly with electronic and structural promotion by the dopants as well as their material compatibility with the Ni-cermet substrate. These findings were evidenced and supported by surface analysis as well as in-situ infrared and mass spectroscopic studies too.\",\"PeriodicalId\":53427,\"journal\":{\"name\":\"Journal of Nuclear Energy Science and Power Generation Technology\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Energy Science and Power Generation Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/JEPT.2102024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Energy Science and Power Generation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/JEPT.2102024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
Performance Investigation of a Nickel Cermet Anode Modified with Copper, Alkaline Earth Metal Oxide, Boron, and Perovskite for Direct Methane Fuel Cell
The metallic copper, alkaline earth metal oxide, boron, and perovskite were incorporated on the surface of a Ni-cermet anode, and the performance of the modified Solid Oxide Fuel Cell (SOFC) anode was evaluated. The cell performance was analyzed by voltage-current characteristics (V-I curve) and H2-CH4 step reactions (P-t curve) in a potentiostatic mode. Besides, we also determined if a metallic phase or high electronic conductivity of the anode is important for a cell to perform well when H2 is used as a fuel, whereas both conductivity and anti-coking capability are critical while using CH4 as a fuel. The results showed that the anodes containing magnesium oxide (MgO), lanthanum strontium titanate (La0.4Sr0.4TiO3−γ), and boron were relatively resistant to the degradation in the CH4 environment when compared with others. The underlying mechanism varied mainly with electronic and structural promotion by the dopants as well as their material compatibility with the Ni-cermet substrate. These findings were evidenced and supported by surface analysis as well as in-situ infrared and mass spectroscopic studies too.