P. Ruch, T. Brunschwiler, S. Paredes, G. Meijer, B. Michel
{"title":"迈向最终高效的泽塔规模数据中心的路线图","authors":"P. Ruch, T. Brunschwiler, S. Paredes, G. Meijer, B. Michel","doi":"10.1109/HPCSim.2013.6641408","DOIUrl":null,"url":null,"abstract":"Chip microscale liquid-cooling reduces thermal resistance and improves datacenter efficiency with higher coolant temperatures by eliminating chillers and allowing thermal energy re-use in cold climates. Liquid cooling enables an unprecedented density in future computers to a level similar to a human brain. This is mediated by a dense 3D architecture for interconnects, fluid cooling, and power delivery of energetic chemical compounds transported in the same fluid. Vertical integration improves memory proximity and electrochemical power delivery creating valuable space for communication. This strongly improves large system efficiency thereby allowing computers to grow beyond exa-scale.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"39 1","pages":"1339-1344"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Roadmap towards ultimately-efficient zeta-scale datacenters\",\"authors\":\"P. Ruch, T. Brunschwiler, S. Paredes, G. Meijer, B. Michel\",\"doi\":\"10.1109/HPCSim.2013.6641408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chip microscale liquid-cooling reduces thermal resistance and improves datacenter efficiency with higher coolant temperatures by eliminating chillers and allowing thermal energy re-use in cold climates. Liquid cooling enables an unprecedented density in future computers to a level similar to a human brain. This is mediated by a dense 3D architecture for interconnects, fluid cooling, and power delivery of energetic chemical compounds transported in the same fluid. Vertical integration improves memory proximity and electrochemical power delivery creating valuable space for communication. This strongly improves large system efficiency thereby allowing computers to grow beyond exa-scale.\",\"PeriodicalId\":6310,\"journal\":{\"name\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"39 1\",\"pages\":\"1339-1344\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCSim.2013.6641408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2013.6641408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Roadmap towards ultimately-efficient zeta-scale datacenters
Chip microscale liquid-cooling reduces thermal resistance and improves datacenter efficiency with higher coolant temperatures by eliminating chillers and allowing thermal energy re-use in cold climates. Liquid cooling enables an unprecedented density in future computers to a level similar to a human brain. This is mediated by a dense 3D architecture for interconnects, fluid cooling, and power delivery of energetic chemical compounds transported in the same fluid. Vertical integration improves memory proximity and electrochemical power delivery creating valuable space for communication. This strongly improves large system efficiency thereby allowing computers to grow beyond exa-scale.