通约HNN扩展:非正曲率和双自动性

IF 2 1区 数学
I. Leary, A. Minasyan
{"title":"通约HNN扩展:非正曲率和双自动性","authors":"I. Leary, A. Minasyan","doi":"10.2140/gt.2021.25.1819","DOIUrl":null,"url":null,"abstract":"We show that the commensurator of any quasiconvex abelian subgroup in a biautomatic group is small, in the sense that it has finite image in the abstract commensurator of the subgroup. Using this criterion we exhibit groups that are CAT(0) but not biautomatic. These groups also resolve a number of other questions concerning CAT(0) groups.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"235 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Commensurating HNN extensions: nonpositive curvature and biautomaticity\",\"authors\":\"I. Leary, A. Minasyan\",\"doi\":\"10.2140/gt.2021.25.1819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the commensurator of any quasiconvex abelian subgroup in a biautomatic group is small, in the sense that it has finite image in the abstract commensurator of the subgroup. Using this criterion we exhibit groups that are CAT(0) but not biautomatic. These groups also resolve a number of other questions concerning CAT(0) groups.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"235 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2021.25.1819\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2021.25.1819","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

证明了双自动群中任意拟凸阿贝尔子群的通约数都是小的,即它在子群的抽象通约数上有有限象。使用这个标准,我们展示了CAT(0)但不是双自动的组。这些组还解决了一些关于CAT(0)组的其他问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Commensurating HNN extensions: nonpositive curvature and biautomaticity
We show that the commensurator of any quasiconvex abelian subgroup in a biautomatic group is small, in the sense that it has finite image in the abstract commensurator of the subgroup. Using this criterion we exhibit groups that are CAT(0) but not biautomatic. These groups also resolve a number of other questions concerning CAT(0) groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信