{"title":"通约HNN扩展:非正曲率和双自动性","authors":"I. Leary, A. Minasyan","doi":"10.2140/gt.2021.25.1819","DOIUrl":null,"url":null,"abstract":"We show that the commensurator of any quasiconvex abelian subgroup in a biautomatic group is small, in the sense that it has finite image in the abstract commensurator of the subgroup. Using this criterion we exhibit groups that are CAT(0) but not biautomatic. These groups also resolve a number of other questions concerning CAT(0) groups.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Commensurating HNN extensions: nonpositive curvature and biautomaticity\",\"authors\":\"I. Leary, A. Minasyan\",\"doi\":\"10.2140/gt.2021.25.1819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the commensurator of any quasiconvex abelian subgroup in a biautomatic group is small, in the sense that it has finite image in the abstract commensurator of the subgroup. Using this criterion we exhibit groups that are CAT(0) but not biautomatic. These groups also resolve a number of other questions concerning CAT(0) groups.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2021.25.1819\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2021.25.1819","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Commensurating HNN extensions: nonpositive curvature and biautomaticity
We show that the commensurator of any quasiconvex abelian subgroup in a biautomatic group is small, in the sense that it has finite image in the abstract commensurator of the subgroup. Using this criterion we exhibit groups that are CAT(0) but not biautomatic. These groups also resolve a number of other questions concerning CAT(0) groups.
期刊介绍:
Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers.
The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.