S. Kumar, U. Tamboli, Varnitha Manikantan, Govindaraj Sri Varalakshmi, Aleyamma Alexander, Sivaraj Ramasamy, A. S. Pillai, I. V. Enoch
{"title":"设计了负载抗癌药物的超细聚合物包被锰钴铁氧体纳米颗粒,通过聚合物表面的主客体络合作用增强抗癌药物的疗效","authors":"S. Kumar, U. Tamboli, Varnitha Manikantan, Govindaraj Sri Varalakshmi, Aleyamma Alexander, Sivaraj Ramasamy, A. S. Pillai, I. V. Enoch","doi":"10.1080/10601325.2023.2235389","DOIUrl":null,"url":null,"abstract":"Abstract Magnetic nanomaterials of different compositions have been examined, focusing on the magnetic field-directed transport of drugs. The size, shape, surface modification and composition variations make every magnetic nanostructure a unique nanocarrier. In this work, we carry out a hydrothermal synthesis of novel manganese-cobalt co-incorporated magnetic ferrite nanoparticles. The particles are characterized using x-ray diffraction, transmission electron microscopy, thermogravimetry and x-ray photoelectron spectroscopy. The size of the nanoparticles is below 10 nm, and they are found to fall under the face-centered cubic system. The nanoparticles are coated with the β-cyclodextrin and folate co-tethered polyethylene glycol. Vibrating sample magnetometry reveals the soft ferromagnetic nature of the nanoparticles with a saturation magnetization value of 28.11 emu g−1 for the coated nanoparticles. The polymer on the nanoparticles allows the loading of the drug feasible, and the encapsulation efficiency is ∼93%. The in vitro release of the drug is monitored and it is observed that the release occurs over 130 h. The cytotoxicity of the free- and camptothecin-loaded manganese-ferrite nanocarrier on breast cancer cell lines is investigated. The IC50 value of the drug-loaded nanocarrier is 2.22 µg mL−1 which is significantly lower than that of the free drug. The drug-encapsulated nanocarrier releases the cargo slowly and continuously and shows increased efficacy, which represents the significance of the nanocarrier. The results present the designed nanomaterial as a suitable anticancer drug vehicle. Graphical Abstract","PeriodicalId":16228,"journal":{"name":"Journal of Macromolecular Science, Part A","volume":"157 1","pages":"580 - 590"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designed ultrafine polymer-coated manganese-cobalt ferrite nanoparticles loaded with anticancer drug: efficacy enhancement through host:guest complexation on the polymer surface\",\"authors\":\"S. Kumar, U. Tamboli, Varnitha Manikantan, Govindaraj Sri Varalakshmi, Aleyamma Alexander, Sivaraj Ramasamy, A. S. Pillai, I. V. Enoch\",\"doi\":\"10.1080/10601325.2023.2235389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Magnetic nanomaterials of different compositions have been examined, focusing on the magnetic field-directed transport of drugs. The size, shape, surface modification and composition variations make every magnetic nanostructure a unique nanocarrier. In this work, we carry out a hydrothermal synthesis of novel manganese-cobalt co-incorporated magnetic ferrite nanoparticles. The particles are characterized using x-ray diffraction, transmission electron microscopy, thermogravimetry and x-ray photoelectron spectroscopy. The size of the nanoparticles is below 10 nm, and they are found to fall under the face-centered cubic system. The nanoparticles are coated with the β-cyclodextrin and folate co-tethered polyethylene glycol. Vibrating sample magnetometry reveals the soft ferromagnetic nature of the nanoparticles with a saturation magnetization value of 28.11 emu g−1 for the coated nanoparticles. The polymer on the nanoparticles allows the loading of the drug feasible, and the encapsulation efficiency is ∼93%. The in vitro release of the drug is monitored and it is observed that the release occurs over 130 h. The cytotoxicity of the free- and camptothecin-loaded manganese-ferrite nanocarrier on breast cancer cell lines is investigated. The IC50 value of the drug-loaded nanocarrier is 2.22 µg mL−1 which is significantly lower than that of the free drug. The drug-encapsulated nanocarrier releases the cargo slowly and continuously and shows increased efficacy, which represents the significance of the nanocarrier. The results present the designed nanomaterial as a suitable anticancer drug vehicle. Graphical Abstract\",\"PeriodicalId\":16228,\"journal\":{\"name\":\"Journal of Macromolecular Science, Part A\",\"volume\":\"157 1\",\"pages\":\"580 - 590\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Macromolecular Science, Part A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10601325.2023.2235389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Macromolecular Science, Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10601325.2023.2235389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Designed ultrafine polymer-coated manganese-cobalt ferrite nanoparticles loaded with anticancer drug: efficacy enhancement through host:guest complexation on the polymer surface
Abstract Magnetic nanomaterials of different compositions have been examined, focusing on the magnetic field-directed transport of drugs. The size, shape, surface modification and composition variations make every magnetic nanostructure a unique nanocarrier. In this work, we carry out a hydrothermal synthesis of novel manganese-cobalt co-incorporated magnetic ferrite nanoparticles. The particles are characterized using x-ray diffraction, transmission electron microscopy, thermogravimetry and x-ray photoelectron spectroscopy. The size of the nanoparticles is below 10 nm, and they are found to fall under the face-centered cubic system. The nanoparticles are coated with the β-cyclodextrin and folate co-tethered polyethylene glycol. Vibrating sample magnetometry reveals the soft ferromagnetic nature of the nanoparticles with a saturation magnetization value of 28.11 emu g−1 for the coated nanoparticles. The polymer on the nanoparticles allows the loading of the drug feasible, and the encapsulation efficiency is ∼93%. The in vitro release of the drug is monitored and it is observed that the release occurs over 130 h. The cytotoxicity of the free- and camptothecin-loaded manganese-ferrite nanocarrier on breast cancer cell lines is investigated. The IC50 value of the drug-loaded nanocarrier is 2.22 µg mL−1 which is significantly lower than that of the free drug. The drug-encapsulated nanocarrier releases the cargo slowly and continuously and shows increased efficacy, which represents the significance of the nanocarrier. The results present the designed nanomaterial as a suitable anticancer drug vehicle. Graphical Abstract