判别不变核特征:一种无监督人脸识别和姿态估计的无噪声方法

Dipan K. Pal, Felix Juefei-Xu, M. Savvides
{"title":"判别不变核特征:一种无监督人脸识别和姿态估计的无噪声方法","authors":"Dipan K. Pal, Felix Juefei-Xu, M. Savvides","doi":"10.1109/CVPR.2016.603","DOIUrl":null,"url":null,"abstract":"We propose an explicitly discriminative and 'simple' approach to generate invariance to nuisance transformations modeled as unitary. In practice, the approach works well to handle non-unitary transformations as well. Our theoretical results extend the reach of a recent theory of invariance to discriminative and kernelized features based on unitary kernels. As a special case, a single common framework can be used to generate subject-specific pose-invariant features for face recognition and vice-versa for pose estimation. We show that our main proposed method (DIKF) can perform well under very challenging large-scale semisynthetic face matching and pose estimation protocols with unaligned faces using no landmarking whatsoever. We additionally benchmark on CMU MPIE and outperform previous work in almost all cases on off-angle face matching while we are on par with the previous state-of-the-art on the LFW unsupervised and image-restricted protocols, without any low-level image descriptors other than raw-pixels.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"545 1","pages":"5590-5599"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Discriminative Invariant Kernel Features: A Bells-and-Whistles-Free Approach to Unsupervised Face Recognition and Pose Estimation\",\"authors\":\"Dipan K. Pal, Felix Juefei-Xu, M. Savvides\",\"doi\":\"10.1109/CVPR.2016.603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an explicitly discriminative and 'simple' approach to generate invariance to nuisance transformations modeled as unitary. In practice, the approach works well to handle non-unitary transformations as well. Our theoretical results extend the reach of a recent theory of invariance to discriminative and kernelized features based on unitary kernels. As a special case, a single common framework can be used to generate subject-specific pose-invariant features for face recognition and vice-versa for pose estimation. We show that our main proposed method (DIKF) can perform well under very challenging large-scale semisynthetic face matching and pose estimation protocols with unaligned faces using no landmarking whatsoever. We additionally benchmark on CMU MPIE and outperform previous work in almost all cases on off-angle face matching while we are on par with the previous state-of-the-art on the LFW unsupervised and image-restricted protocols, without any low-level image descriptors other than raw-pixels.\",\"PeriodicalId\":6515,\"journal\":{\"name\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"545 1\",\"pages\":\"5590-5599\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2016.603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

我们提出了一个明确的判别和“简单”的方法来生成不变性的麻烦转换建模为统一。在实践中,该方法也能很好地处理非酉变换。我们的理论结果将最近的不变性理论扩展到基于酉核的判别和核化特征。作为一种特殊情况,可以使用一个通用框架来生成人脸识别的特定对象的姿势不变特征,反之亦然,用于姿势估计。我们表明,我们提出的主要方法(DIKF)可以在非常具有挑战性的大规模半合成人脸匹配和不使用任何地标的未对齐人脸姿态估计协议下表现良好。我们还在CMU MPIE上进行了基准测试,并且在几乎所有情况下,在非角度人脸匹配方面都优于之前的工作,同时我们在LFW无监督和图像限制协议上与之前的最先进技术相当,除了原始像素之外没有任何低级图像描述符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discriminative Invariant Kernel Features: A Bells-and-Whistles-Free Approach to Unsupervised Face Recognition and Pose Estimation
We propose an explicitly discriminative and 'simple' approach to generate invariance to nuisance transformations modeled as unitary. In practice, the approach works well to handle non-unitary transformations as well. Our theoretical results extend the reach of a recent theory of invariance to discriminative and kernelized features based on unitary kernels. As a special case, a single common framework can be used to generate subject-specific pose-invariant features for face recognition and vice-versa for pose estimation. We show that our main proposed method (DIKF) can perform well under very challenging large-scale semisynthetic face matching and pose estimation protocols with unaligned faces using no landmarking whatsoever. We additionally benchmark on CMU MPIE and outperform previous work in almost all cases on off-angle face matching while we are on par with the previous state-of-the-art on the LFW unsupervised and image-restricted protocols, without any low-level image descriptors other than raw-pixels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信