直流磁控溅射功率对Nb2O5/Si薄膜结构、形貌和气体传感器性能的影响

Yahya R. Hathal, Isam M. Ibrahim, Mohammed K. Khalaf, Ehsan H. Sabbar, Musaria K. Mahmood
{"title":"直流磁控溅射功率对Nb2O5/Si薄膜结构、形貌和气体传感器性能的影响","authors":"Yahya R. Hathal, Isam M. Ibrahim, Mohammed K. Khalaf, Ehsan H. Sabbar, Musaria K. Mahmood","doi":"10.30723/ijp.v21i3.1153","DOIUrl":null,"url":null,"abstract":"This study focuses on synthesizing Niobium pentoxide (Nb2O5) thin films on silicon wafers and quartz substrates using DC reactive magnetron sputtering for NO2 gas sensors. The films undergo annealing in ambient air at 800 °C for 1 hr. Various characterization techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity measurements, are employed to evaluate the structural, morphological, electrical, and sensing properties of the Nb2O5 thin films. XRD analysis confirms the polycrystalline nature and hexagonal crystal structure of Nb2O5. The optical band gap values of the Nb2O5 thin films demonstrate a decrease from 4.74 to 3.73 eV as the sputtering power is increased from 25 to 75 W. AFM images illustrate a progressive increase in particle size ranging from (41.86) to (45.56) nm, with varying sputtering power between 25 and 75 W. Additionally, EDS analysis validates the rise in Nb content, increasing from 12.2 at. % to 20.1 at. %, corresponding to the increase in sputtering power. Hall effect measurements show that all films exhibit n-type charge carriers, and increasing sputtering power leads to decreased carrier concentration and enhanced mobility. The gas sensor's sensitivity, response, and recovery time were evaluated at various operating temperatures. The NO2 sensor exhibited an optimal sensitivity of 28.6% at 200 °C when the sputtering power was set to 50 W.","PeriodicalId":14653,"journal":{"name":"Iraqi Journal of Physics (IJP)","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of DC Magnetron Sputtering Power on Structural, Topography, and Gas Sensor Properties of Nb2O5/Si Thin Films.\",\"authors\":\"Yahya R. Hathal, Isam M. Ibrahim, Mohammed K. Khalaf, Ehsan H. Sabbar, Musaria K. Mahmood\",\"doi\":\"10.30723/ijp.v21i3.1153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on synthesizing Niobium pentoxide (Nb2O5) thin films on silicon wafers and quartz substrates using DC reactive magnetron sputtering for NO2 gas sensors. The films undergo annealing in ambient air at 800 °C for 1 hr. Various characterization techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity measurements, are employed to evaluate the structural, morphological, electrical, and sensing properties of the Nb2O5 thin films. XRD analysis confirms the polycrystalline nature and hexagonal crystal structure of Nb2O5. The optical band gap values of the Nb2O5 thin films demonstrate a decrease from 4.74 to 3.73 eV as the sputtering power is increased from 25 to 75 W. AFM images illustrate a progressive increase in particle size ranging from (41.86) to (45.56) nm, with varying sputtering power between 25 and 75 W. Additionally, EDS analysis validates the rise in Nb content, increasing from 12.2 at. % to 20.1 at. %, corresponding to the increase in sputtering power. Hall effect measurements show that all films exhibit n-type charge carriers, and increasing sputtering power leads to decreased carrier concentration and enhanced mobility. The gas sensor's sensitivity, response, and recovery time were evaluated at various operating temperatures. The NO2 sensor exhibited an optimal sensitivity of 28.6% at 200 °C when the sputtering power was set to 50 W.\",\"PeriodicalId\":14653,\"journal\":{\"name\":\"Iraqi Journal of Physics (IJP)\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iraqi Journal of Physics (IJP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30723/ijp.v21i3.1153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal of Physics (IJP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30723/ijp.v21i3.1153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究了利用直流反应磁控溅射技术在硅片和石英衬底上合成二氧化氮气体传感器用的五氧化二铌(Nb2O5)薄膜。薄膜在环境空气中800℃退火1小时。采用各种表征技术,包括x射线衍射(XRD)、原子力显微镜(AFM)、能量色散x射线光谱(EDS)、霍尔效应测量和灵敏度测量,对Nb2O5薄膜的结构、形态、电学和传感性能进行了评价。XRD分析证实了Nb2O5的多晶性质和六方晶体结构。当溅射功率从25 W增加到75 W时,Nb2O5薄膜的光学带隙值从4.74 eV减小到3.73 eV。AFM图像显示,随着溅射功率在25至75 W之间变化,颗粒尺寸逐渐增加,范围从(41.86)到(45.56)nm。此外,EDS分析证实了Nb含量的上升,从12.2 at增加。至20.1%。%,相应增加溅射功率。霍尔效应测量表明,所有薄膜均呈现n型载流子,溅射功率的增加导致载流子浓度的降低和迁移率的提高。在不同的工作温度下,对气体传感器的灵敏度、响应和恢复时间进行了评估。当溅射功率为50 W时,NO2传感器在200°C时的最佳灵敏度为28.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of DC Magnetron Sputtering Power on Structural, Topography, and Gas Sensor Properties of Nb2O5/Si Thin Films.
This study focuses on synthesizing Niobium pentoxide (Nb2O5) thin films on silicon wafers and quartz substrates using DC reactive magnetron sputtering for NO2 gas sensors. The films undergo annealing in ambient air at 800 °C for 1 hr. Various characterization techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity measurements, are employed to evaluate the structural, morphological, electrical, and sensing properties of the Nb2O5 thin films. XRD analysis confirms the polycrystalline nature and hexagonal crystal structure of Nb2O5. The optical band gap values of the Nb2O5 thin films demonstrate a decrease from 4.74 to 3.73 eV as the sputtering power is increased from 25 to 75 W. AFM images illustrate a progressive increase in particle size ranging from (41.86) to (45.56) nm, with varying sputtering power between 25 and 75 W. Additionally, EDS analysis validates the rise in Nb content, increasing from 12.2 at. % to 20.1 at. %, corresponding to the increase in sputtering power. Hall effect measurements show that all films exhibit n-type charge carriers, and increasing sputtering power leads to decreased carrier concentration and enhanced mobility. The gas sensor's sensitivity, response, and recovery time were evaluated at various operating temperatures. The NO2 sensor exhibited an optimal sensitivity of 28.6% at 200 °C when the sputtering power was set to 50 W.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信