Landau-Brazovskii模型的凸分裂光谱延迟校正方法

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Donghang Zhang , Lei Zhang
{"title":"Landau-Brazovskii模型的凸分裂光谱延迟校正方法","authors":"Donghang Zhang ,&nbsp;Lei Zhang","doi":"10.1016/j.jcp.2023.112348","DOIUrl":null,"url":null,"abstract":"<div><p>The Landau–Brazovskii model is a well-known Landau model for finding the complex phase structures in microphase-separating systems ranging from block copolymers<span> to liquid crystals. It is critical to design efficient numerical schemes for the Landau–Brazovskii model with energy dissipation<span><span> and mass conservation properties. Here, we propose a mass conservative and energy stable scheme by combining the spectral deferred correction (SDC) method with the convex splitting technique to solve the Landau–Brazovskii model efficiently. An adaptive correction strategy for the SDC method is implemented to reduce the cost time and preserve energy stability. Numerical experiments, including two- and three-dimensional periodic crystals in Landau–Brazovskii model, are presented to show the efficiency of the proposed </span>numerical method.</span></span></p></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"491 ","pages":"Article 112348"},"PeriodicalIF":3.8000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral deferred correction method for Landau–Brazovskii model with convex splitting technique\",\"authors\":\"Donghang Zhang ,&nbsp;Lei Zhang\",\"doi\":\"10.1016/j.jcp.2023.112348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Landau–Brazovskii model is a well-known Landau model for finding the complex phase structures in microphase-separating systems ranging from block copolymers<span> to liquid crystals. It is critical to design efficient numerical schemes for the Landau–Brazovskii model with energy dissipation<span><span> and mass conservation properties. Here, we propose a mass conservative and energy stable scheme by combining the spectral deferred correction (SDC) method with the convex splitting technique to solve the Landau–Brazovskii model efficiently. An adaptive correction strategy for the SDC method is implemented to reduce the cost time and preserve energy stability. Numerical experiments, including two- and three-dimensional periodic crystals in Landau–Brazovskii model, are presented to show the efficiency of the proposed </span>numerical method.</span></span></p></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"491 \",\"pages\":\"Article 112348\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999123004436\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999123004436","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

Landau - brazovskii模型是一种著名的朗道模型,用于发现从嵌段共聚物到液晶的微相分离系统中的复杂相结构。对于具有能量耗散和质量守恒特性的Landau-Brazovskii模型,设计有效的数值格式至关重要。本文提出了一种将谱延迟校正(SDC)方法与凸分裂技术相结合的质量保守和能量稳定方案,以有效地求解Landau-Brazovskii模型。采用自适应校正策略对SDC方法进行校正,降低了成本时间,保持了能量稳定性。通过Landau-Brazovskii模型中二维和三维周期晶体的数值实验,验证了所提数值方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral deferred correction method for Landau–Brazovskii model with convex splitting technique

The Landau–Brazovskii model is a well-known Landau model for finding the complex phase structures in microphase-separating systems ranging from block copolymers to liquid crystals. It is critical to design efficient numerical schemes for the Landau–Brazovskii model with energy dissipation and mass conservation properties. Here, we propose a mass conservative and energy stable scheme by combining the spectral deferred correction (SDC) method with the convex splitting technique to solve the Landau–Brazovskii model efficiently. An adaptive correction strategy for the SDC method is implemented to reduce the cost time and preserve energy stability. Numerical experiments, including two- and three-dimensional periodic crystals in Landau–Brazovskii model, are presented to show the efficiency of the proposed numerical method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信