lamplighter型群的扭曲Burnside-Frobenius定理和$ r_inty $-性质

M. I. Fraiman
{"title":"lamplighter型群的扭曲Burnside-Frobenius定理和$ r_inty $-性质","authors":"M. I. Fraiman","doi":"10.33048/SEMI.2020.17.065","DOIUrl":null,"url":null,"abstract":"We prove that the restricted wreath product ${\\mathbb{Z}_n \\mathbin{\\mathrm{wr}} \\mathbb{Z}^k}$ has the $R_\\infty$-property, i. e. every its automorphism $\\varphi$ has infinite Reidemeister number $R(\\varphi)$, in exactly two cases: (1) for any $k$ and even $n$; (2) for odd $k$ and $n$ divisible by 3. In the remaining cases there are automorphisms with finite Reidemeister number, for which we prove the finite-dimensional twisted Burnside--Frobenius theorem (TBFT): $R(\\varphi)$ is equal to the number of equivalence classes of finite-dimensional irreducible unitary representations fixed by the action ${[\\rho]\\mapsto[\\rho\\circ\\varphi]}$.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Twisted Burnside–Frobenius theorem and $R_infty$-property for lamplighter-type groups\",\"authors\":\"M. I. Fraiman\",\"doi\":\"10.33048/SEMI.2020.17.065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the restricted wreath product ${\\\\mathbb{Z}_n \\\\mathbin{\\\\mathrm{wr}} \\\\mathbb{Z}^k}$ has the $R_\\\\infty$-property, i. e. every its automorphism $\\\\varphi$ has infinite Reidemeister number $R(\\\\varphi)$, in exactly two cases: (1) for any $k$ and even $n$; (2) for odd $k$ and $n$ divisible by 3. In the remaining cases there are automorphisms with finite Reidemeister number, for which we prove the finite-dimensional twisted Burnside--Frobenius theorem (TBFT): $R(\\\\varphi)$ is equal to the number of equivalence classes of finite-dimensional irreducible unitary representations fixed by the action ${[\\\\rho]\\\\mapsto[\\\\rho\\\\circ\\\\varphi]}$.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33048/SEMI.2020.17.065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33048/SEMI.2020.17.065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们证明了限制环积${\mathbb{Z}_n \mathbin{\mathrm{wr}} \mathbb{Z}^k}$具有$R_\infty$ -性质,即它的每一个自同构$\varphi$都有无限的Reidemeister数$R(\varphi)$,在恰好两种情况下:(1)对于任意$k$和$n$;(2)对于奇数$k$和$n$可被3整除。在其他情况下,存在有限Reidemeister数的自同构,对此我们证明了有限维扭曲Burnside—Frobenius定理(TBFT): $R(\varphi)$等于由作用${[\rho]\mapsto[\rho\circ\varphi]}$固定的有限维不可约酉表示的等价类的数目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twisted Burnside–Frobenius theorem and $R_infty$-property for lamplighter-type groups
We prove that the restricted wreath product ${\mathbb{Z}_n \mathbin{\mathrm{wr}} \mathbb{Z}^k}$ has the $R_\infty$-property, i. e. every its automorphism $\varphi$ has infinite Reidemeister number $R(\varphi)$, in exactly two cases: (1) for any $k$ and even $n$; (2) for odd $k$ and $n$ divisible by 3. In the remaining cases there are automorphisms with finite Reidemeister number, for which we prove the finite-dimensional twisted Burnside--Frobenius theorem (TBFT): $R(\varphi)$ is equal to the number of equivalence classes of finite-dimensional irreducible unitary representations fixed by the action ${[\rho]\mapsto[\rho\circ\varphi]}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信