坐标系上连续整数值函数环的理想

Pub Date : 2022-03-01 DOI:10.36045/j.bbms.210412
T. Dube, O. Ighedo, Batsile Tlharesakgosi
{"title":"坐标系上连续整数值函数环的理想","authors":"T. Dube, O. Ighedo, Batsile Tlharesakgosi","doi":"10.36045/j.bbms.210412","DOIUrl":null,"url":null,"abstract":"Let L be a zero-dimensional frame and Z L be the ring of integer-valued continuous functions on L . We associate with each sublocale of ζL , the Banaschewski compactification of L , an ideal of Z L , and show the behaviour of these types of ideals. The socle of Z L is shown to be always the zero ideal, in contrast with the fact that the socle of the ring R L of continuous real-valued functions on L is not necessarily the zero ideal. The ring Z L has been shown by B. Banaschewski to be (isomorphic to) a subring of R L , so that the ideals of the larger ring can be contracted to the smaller one. We show that the contraction of the socle of R L to Z L is the ideal of Z L associated with the join (in the coframe of sublocales of ζL ) of all nowhere dense sublocales of ζL . It also appears in other guises.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On ideals of rings of continuous integer-valued functions on a frame\",\"authors\":\"T. Dube, O. Ighedo, Batsile Tlharesakgosi\",\"doi\":\"10.36045/j.bbms.210412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let L be a zero-dimensional frame and Z L be the ring of integer-valued continuous functions on L . We associate with each sublocale of ζL , the Banaschewski compactification of L , an ideal of Z L , and show the behaviour of these types of ideals. The socle of Z L is shown to be always the zero ideal, in contrast with the fact that the socle of the ring R L of continuous real-valued functions on L is not necessarily the zero ideal. The ring Z L has been shown by B. Banaschewski to be (isomorphic to) a subring of R L , so that the ideals of the larger ring can be contracted to the smaller one. We show that the contraction of the socle of R L to Z L is the ideal of Z L associated with the join (in the coframe of sublocales of ζL ) of all nowhere dense sublocales of ζL . It also appears in other guises.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.36045/j.bbms.210412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/j.bbms.210412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设L为零维坐标系,zl为L上的整数连续函数环。我们将ζL的每个子区域,L的Banaschewski紧化,zl的一个理想联系起来,并展示了这些理想类型的行为。与L上连续实值函数的环rl的圈不一定是零理想相反,zl的圈总是零理想。B. Banaschewski已经证明环zl与rl的子环同构,因此大环的理想可以缩并到小环上。我们证明了rl到zl的集合的收缩是zl与所有无处密集的ζL的子域的连接(在ζL的子域的协框中)相关的理想。它也以其他形式出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On ideals of rings of continuous integer-valued functions on a frame
Let L be a zero-dimensional frame and Z L be the ring of integer-valued continuous functions on L . We associate with each sublocale of ζL , the Banaschewski compactification of L , an ideal of Z L , and show the behaviour of these types of ideals. The socle of Z L is shown to be always the zero ideal, in contrast with the fact that the socle of the ring R L of continuous real-valued functions on L is not necessarily the zero ideal. The ring Z L has been shown by B. Banaschewski to be (isomorphic to) a subring of R L , so that the ideals of the larger ring can be contracted to the smaller one. We show that the contraction of the socle of R L to Z L is the ideal of Z L associated with the join (in the coframe of sublocales of ζL ) of all nowhere dense sublocales of ζL . It also appears in other guises.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信