比较各向异性深度完井模型的不同指标

V. Lazcano, F. Calderero, C. Ballester
{"title":"比较各向异性深度完井模型的不同指标","authors":"V. Lazcano, F. Calderero, C. Ballester","doi":"10.3233/his-210006","DOIUrl":null,"url":null,"abstract":"This paper discussed an anisotropic interpolation model that filling in-depth data in a largely empty region of a depth map. We consider an image with an anisotropic metric gi⁢j that incorporates spatial and photometric data. We propose a numerical implementation of our model based on the “eikonal” operator, which compute the solution of a degenerated partial differential equation (the biased Infinity Laplacian or biased Absolutely Minimizing Lipschitz Extension). This equation’s solution creates exponential cones based on the available data, extending the available depth data and completing the depth map image. Because of this, this operator is better suited to interpolating smooth surfaces. To perform this task, we assume we have at our disposal a reference color image and a depth map. We carried out an experimental comparison of the AMLE and bAMLE using various metrics with square root, absolute value, and quadratic terms. In these experiments, considered color spaces were sRGB, XYZ, CIE-L*⁢a*⁢b*, and CMY. In this document, we also presented a proposal to extend the AMLE and bAMLE to the time domain. Finally, in the parameter estimation of the model, we compared EHO and PSO. The combination of sRGB and square root metric produces the best results, demonstrating that our bAMLE model outperforms the AMLE model and other contemporary models in the KITTI depth completion suite dataset. This type of model, such as AMLE and bAMLE, is simple to implement and represents a low-cost implementation option for similar applications.","PeriodicalId":88526,"journal":{"name":"International journal of hybrid intelligent systems","volume":"27 1","pages":"87-99"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparing different metrics on an anisotropic depth completion model\",\"authors\":\"V. Lazcano, F. Calderero, C. Ballester\",\"doi\":\"10.3233/his-210006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discussed an anisotropic interpolation model that filling in-depth data in a largely empty region of a depth map. We consider an image with an anisotropic metric gi⁢j that incorporates spatial and photometric data. We propose a numerical implementation of our model based on the “eikonal” operator, which compute the solution of a degenerated partial differential equation (the biased Infinity Laplacian or biased Absolutely Minimizing Lipschitz Extension). This equation’s solution creates exponential cones based on the available data, extending the available depth data and completing the depth map image. Because of this, this operator is better suited to interpolating smooth surfaces. To perform this task, we assume we have at our disposal a reference color image and a depth map. We carried out an experimental comparison of the AMLE and bAMLE using various metrics with square root, absolute value, and quadratic terms. In these experiments, considered color spaces were sRGB, XYZ, CIE-L*⁢a*⁢b*, and CMY. In this document, we also presented a proposal to extend the AMLE and bAMLE to the time domain. Finally, in the parameter estimation of the model, we compared EHO and PSO. The combination of sRGB and square root metric produces the best results, demonstrating that our bAMLE model outperforms the AMLE model and other contemporary models in the KITTI depth completion suite dataset. This type of model, such as AMLE and bAMLE, is simple to implement and represents a low-cost implementation option for similar applications.\",\"PeriodicalId\":88526,\"journal\":{\"name\":\"International journal of hybrid intelligent systems\",\"volume\":\"27 1\",\"pages\":\"87-99\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of hybrid intelligent systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/his-210006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of hybrid intelligent systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/his-210006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文讨论了在深度图空白区域填充深度数据的各向异性插值模型。我们考虑具有各向异性度量gi²j的图像,其中包含空间和光度数据。我们提出了一个基于“eikonal”算子的模型的数值实现,该算子计算退化偏微分方程(有偏无穷拉普拉斯或有偏绝对最小化Lipschitz扩展)的解。该方程的解基于可用数据创建指数锥,扩展可用深度数据并完成深度图图像。正因为如此,这个算子更适合于平滑曲面的插值。为了完成这个任务,我们假设我们有一个参考彩色图像和一个深度图。我们使用各种具有平方根、绝对值和二次项的指标对AMLE和bAMLE进行了实验比较。在这些实验中,考虑的颜色空间是sRGB, XYZ, CIE-L* * a* * * b*和CMY。在本文中,我们还提出了将AMLE和bAMLE扩展到时域的建议。最后,在模型的参数估计中,我们比较了EHO和PSO。sRGB和平方根度量的结合产生了最好的结果,表明我们的bAMLE模型在KITTI深度完井套件数据集中优于AMLE模型和其他当代模型。这种类型的模型(如AMLE和bAMLE)易于实现,并且代表了类似应用程序的低成本实现选项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing different metrics on an anisotropic depth completion model
This paper discussed an anisotropic interpolation model that filling in-depth data in a largely empty region of a depth map. We consider an image with an anisotropic metric gi⁢j that incorporates spatial and photometric data. We propose a numerical implementation of our model based on the “eikonal” operator, which compute the solution of a degenerated partial differential equation (the biased Infinity Laplacian or biased Absolutely Minimizing Lipschitz Extension). This equation’s solution creates exponential cones based on the available data, extending the available depth data and completing the depth map image. Because of this, this operator is better suited to interpolating smooth surfaces. To perform this task, we assume we have at our disposal a reference color image and a depth map. We carried out an experimental comparison of the AMLE and bAMLE using various metrics with square root, absolute value, and quadratic terms. In these experiments, considered color spaces were sRGB, XYZ, CIE-L*⁢a*⁢b*, and CMY. In this document, we also presented a proposal to extend the AMLE and bAMLE to the time domain. Finally, in the parameter estimation of the model, we compared EHO and PSO. The combination of sRGB and square root metric produces the best results, demonstrating that our bAMLE model outperforms the AMLE model and other contemporary models in the KITTI depth completion suite dataset. This type of model, such as AMLE and bAMLE, is simple to implement and represents a low-cost implementation option for similar applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信