{"title":"一般旋转敏感壳的计算渐近分析","authors":"H. Hakula","doi":"10.3390/applmech3030062","DOIUrl":null,"url":null,"abstract":"Recent advances in drug delivery technology have led to renewed interest in shell structures with mixed kinematical constraints, one end clamped, another one free, the so-called sensitive shells. It is known that elliptic sensitive shell problems may not always satisfy the Shapiro–Lopatinsky conditions and hence are not necessarily well-posed. The new observation is that for shells of revolution if the profile function has regions of elliptic Gaussian curvature, that region will dictate the overall response of the structure under concentrated loading. Despite the monotonically increasing total energy as the thickness tends asymptotically to zero, these shells are not in a pure bending state. The numerical results have been verified using equivalent lower-dimensional solutions.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":null,"pages":null},"PeriodicalIF":12.2000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Computational Asymptotic Analysis of General Sensitive Shells of Revolution\",\"authors\":\"H. Hakula\",\"doi\":\"10.3390/applmech3030062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in drug delivery technology have led to renewed interest in shell structures with mixed kinematical constraints, one end clamped, another one free, the so-called sensitive shells. It is known that elliptic sensitive shell problems may not always satisfy the Shapiro–Lopatinsky conditions and hence are not necessarily well-posed. The new observation is that for shells of revolution if the profile function has regions of elliptic Gaussian curvature, that region will dictate the overall response of the structure under concentrated loading. Despite the monotonically increasing total energy as the thickness tends asymptotically to zero, these shells are not in a pure bending state. The numerical results have been verified using equivalent lower-dimensional solutions.\",\"PeriodicalId\":8048,\"journal\":{\"name\":\"Applied Mechanics Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mechanics Reviews\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/applmech3030062\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mechanics Reviews","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/applmech3030062","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
On Computational Asymptotic Analysis of General Sensitive Shells of Revolution
Recent advances in drug delivery technology have led to renewed interest in shell structures with mixed kinematical constraints, one end clamped, another one free, the so-called sensitive shells. It is known that elliptic sensitive shell problems may not always satisfy the Shapiro–Lopatinsky conditions and hence are not necessarily well-posed. The new observation is that for shells of revolution if the profile function has regions of elliptic Gaussian curvature, that region will dictate the overall response of the structure under concentrated loading. Despite the monotonically increasing total energy as the thickness tends asymptotically to zero, these shells are not in a pure bending state. The numerical results have been verified using equivalent lower-dimensional solutions.
期刊介绍:
Applied Mechanics Reviews (AMR) is an international review journal that serves as a premier venue for dissemination of material across all subdisciplines of applied mechanics and engineering science, including fluid and solid mechanics, heat transfer, dynamics and vibration, and applications.AMR provides an archival repository for state-of-the-art and retrospective survey articles and reviews of research areas and curricular developments. The journal invites commentary on research and education policy in different countries. The journal also invites original tutorial and educational material in applied mechanics targeting non-specialist audiences, including undergraduate and K-12 students.