J. Hernández-Barragán, C. López-Franco, N. Arana-Daniel, A. Alanis, Adriana Lopez-Franco
{"title":"机器人运动学逆解的改进萤火虫算法","authors":"J. Hernández-Barragán, C. López-Franco, N. Arana-Daniel, A. Alanis, Adriana Lopez-Franco","doi":"10.3233/ICA-210660","DOIUrl":null,"url":null,"abstract":"The inverse kinematics of robotic manipulators consists of finding a joint configuration to reach a desired end-effector pose. Since inverse kinematics is a complex non-linear problem with redundant solutions, sophisticated optimization techniques are often required to solve this problem; a possible solution can be found in metaheuristic algorithms. In this work, a modified version of the firefly algorithm for multimodal optimization is proposed to solve the inverse kinematics. This modified version can provide multiple joint configurations leading to the same end-effector pose, improving the classic firefly algorithm performance. Moreover, the proposed approach avoids singularities because it does not require any Jacobian matrix inversion, which is the main problem of conventional approaches. The proposed approach can be implemented in robotic manipulators composed of revolute or prismatic joints of n degrees of freedom considering joint limits constrains. Simulations with different robotic manipulators show the accuracy and robustness of the proposed approach. Additionally, non-parametric statistical tests are included to show that the proposed method has a statistically significant improvement over other multimodal optimization algorithms. Finally, real-time experiments on five degrees of freedom robotic manipulator illustrate the applicability of this approach.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":"51 1","pages":"257-275"},"PeriodicalIF":5.8000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A modified firefly algorithm for the inverse kinematics solutions of robotic manipulators\",\"authors\":\"J. Hernández-Barragán, C. López-Franco, N. Arana-Daniel, A. Alanis, Adriana Lopez-Franco\",\"doi\":\"10.3233/ICA-210660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The inverse kinematics of robotic manipulators consists of finding a joint configuration to reach a desired end-effector pose. Since inverse kinematics is a complex non-linear problem with redundant solutions, sophisticated optimization techniques are often required to solve this problem; a possible solution can be found in metaheuristic algorithms. In this work, a modified version of the firefly algorithm for multimodal optimization is proposed to solve the inverse kinematics. This modified version can provide multiple joint configurations leading to the same end-effector pose, improving the classic firefly algorithm performance. Moreover, the proposed approach avoids singularities because it does not require any Jacobian matrix inversion, which is the main problem of conventional approaches. The proposed approach can be implemented in robotic manipulators composed of revolute or prismatic joints of n degrees of freedom considering joint limits constrains. Simulations with different robotic manipulators show the accuracy and robustness of the proposed approach. Additionally, non-parametric statistical tests are included to show that the proposed method has a statistically significant improvement over other multimodal optimization algorithms. Finally, real-time experiments on five degrees of freedom robotic manipulator illustrate the applicability of this approach.\",\"PeriodicalId\":50358,\"journal\":{\"name\":\"Integrated Computer-Aided Engineering\",\"volume\":\"51 1\",\"pages\":\"257-275\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Computer-Aided Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ICA-210660\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ICA-210660","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A modified firefly algorithm for the inverse kinematics solutions of robotic manipulators
The inverse kinematics of robotic manipulators consists of finding a joint configuration to reach a desired end-effector pose. Since inverse kinematics is a complex non-linear problem with redundant solutions, sophisticated optimization techniques are often required to solve this problem; a possible solution can be found in metaheuristic algorithms. In this work, a modified version of the firefly algorithm for multimodal optimization is proposed to solve the inverse kinematics. This modified version can provide multiple joint configurations leading to the same end-effector pose, improving the classic firefly algorithm performance. Moreover, the proposed approach avoids singularities because it does not require any Jacobian matrix inversion, which is the main problem of conventional approaches. The proposed approach can be implemented in robotic manipulators composed of revolute or prismatic joints of n degrees of freedom considering joint limits constrains. Simulations with different robotic manipulators show the accuracy and robustness of the proposed approach. Additionally, non-parametric statistical tests are included to show that the proposed method has a statistically significant improvement over other multimodal optimization algorithms. Finally, real-time experiments on five degrees of freedom robotic manipulator illustrate the applicability of this approach.
期刊介绍:
Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal.
The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.