{"title":"银纳米点功能化骨水泥在骨科医学中的应用","authors":"A.G.J.Patricia, M.Uma Devi mahalingm","doi":"10.35248/2157-7439.21.12.569","DOIUrl":null,"url":null,"abstract":"The latest development in orthopaedics is the advent of silver nano particles and their applications in nano medicine. Silver nano dots in the size range of ≤ 20 nm can be studied to analyze their usage in the field of orthopaedics. They can be used in bone cement which are used as artificial bpne replacement. Bone cements have been used very successfully to anchor artificial joints like hip joints, knee joints, shoulder and elbow joints in suffering patients in the field of ortho paedic medicine. Polymethyl methacrylate loaded with nanosilver is being considered as bone cement as the nano silver can induce very high antimicrobial activity essential for the killing of infectious microorganisms known for their anti-resistance to currently available antibiotics and antiseptics.The free space between the bone and the prosthesis is filled with bone cement which acts like a elastic buffer zone. This is necessary because the body weight and the bone cement must absorb the forces acting on the body to ensure that the artificial medical implant remains in place over the long term. In this study, we analyze silver nano dots encapsulated bone cement for medical purposes which can prevent surgical infection in replacement surgeries drastically than the methods currently in use. Also in this study it was found due their unique properties they can accelerate the wound healing process at a faster rate than the rest of the conventional methods practiced in the ortho paedics field.","PeriodicalId":16532,"journal":{"name":"Journal of Nanomedicine & Nanotechnology","volume":"54 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SILVER NANO DOTS FUNCTIONALIZED BONE CEMENT FOR ORTHOPAEDIC MEDICAL APPLICATIONS\",\"authors\":\"A.G.J.Patricia, M.Uma Devi mahalingm\",\"doi\":\"10.35248/2157-7439.21.12.569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The latest development in orthopaedics is the advent of silver nano particles and their applications in nano medicine. Silver nano dots in the size range of ≤ 20 nm can be studied to analyze their usage in the field of orthopaedics. They can be used in bone cement which are used as artificial bpne replacement. Bone cements have been used very successfully to anchor artificial joints like hip joints, knee joints, shoulder and elbow joints in suffering patients in the field of ortho paedic medicine. Polymethyl methacrylate loaded with nanosilver is being considered as bone cement as the nano silver can induce very high antimicrobial activity essential for the killing of infectious microorganisms known for their anti-resistance to currently available antibiotics and antiseptics.The free space between the bone and the prosthesis is filled with bone cement which acts like a elastic buffer zone. This is necessary because the body weight and the bone cement must absorb the forces acting on the body to ensure that the artificial medical implant remains in place over the long term. In this study, we analyze silver nano dots encapsulated bone cement for medical purposes which can prevent surgical infection in replacement surgeries drastically than the methods currently in use. Also in this study it was found due their unique properties they can accelerate the wound healing process at a faster rate than the rest of the conventional methods practiced in the ortho paedics field.\",\"PeriodicalId\":16532,\"journal\":{\"name\":\"Journal of Nanomedicine & Nanotechnology\",\"volume\":\"54 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanomedicine & Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35248/2157-7439.21.12.569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomedicine & Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35248/2157-7439.21.12.569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SILVER NANO DOTS FUNCTIONALIZED BONE CEMENT FOR ORTHOPAEDIC MEDICAL APPLICATIONS
The latest development in orthopaedics is the advent of silver nano particles and their applications in nano medicine. Silver nano dots in the size range of ≤ 20 nm can be studied to analyze their usage in the field of orthopaedics. They can be used in bone cement which are used as artificial bpne replacement. Bone cements have been used very successfully to anchor artificial joints like hip joints, knee joints, shoulder and elbow joints in suffering patients in the field of ortho paedic medicine. Polymethyl methacrylate loaded with nanosilver is being considered as bone cement as the nano silver can induce very high antimicrobial activity essential for the killing of infectious microorganisms known for their anti-resistance to currently available antibiotics and antiseptics.The free space between the bone and the prosthesis is filled with bone cement which acts like a elastic buffer zone. This is necessary because the body weight and the bone cement must absorb the forces acting on the body to ensure that the artificial medical implant remains in place over the long term. In this study, we analyze silver nano dots encapsulated bone cement for medical purposes which can prevent surgical infection in replacement surgeries drastically than the methods currently in use. Also in this study it was found due their unique properties they can accelerate the wound healing process at a faster rate than the rest of the conventional methods practiced in the ortho paedics field.