穗和板Pólya树后密度:自适应推断

IF 1.5 Q2 PHYSICS, MATHEMATICAL
I. Castillo, Romain Mismer
{"title":"穗和板Pólya树后密度:自适应推断","authors":"I. Castillo, Romain Mismer","doi":"10.1214/20-AIHP1132","DOIUrl":null,"url":null,"abstract":"Abstract: In the density estimation model, the question of adaptive inference using Pólya tree–type prior distributions is considered. A class of prior densities having a tree structure, called spike–and–slab Pólya trees, is introduced. For this class, two types of results are obtained: first, the Bayesian posterior distribution is shown to converge at the minimax rate for the supremum norm in an adaptive way, for any Hölder regularity of the true density between 0 and 1, thereby providing adaptive counterparts to the results for classical Pólya trees in [5]. Second, the question of uncertainty quantification is considered. An adaptive nonparametric Bernstein– von Mises theorem is derived. Next, it is shown that, under a self-similarity condition on the true density, certain credible sets from the posterior distribution are adaptive confidence bands, having prescribed coverage level and with a diameter shrinking at optimal rate in the minimax sense.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Spike and slab Pólya tree posterior densities: Adaptive inference\",\"authors\":\"I. Castillo, Romain Mismer\",\"doi\":\"10.1214/20-AIHP1132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: In the density estimation model, the question of adaptive inference using Pólya tree–type prior distributions is considered. A class of prior densities having a tree structure, called spike–and–slab Pólya trees, is introduced. For this class, two types of results are obtained: first, the Bayesian posterior distribution is shown to converge at the minimax rate for the supremum norm in an adaptive way, for any Hölder regularity of the true density between 0 and 1, thereby providing adaptive counterparts to the results for classical Pólya trees in [5]. Second, the question of uncertainty quantification is considered. An adaptive nonparametric Bernstein– von Mises theorem is derived. Next, it is shown that, under a self-similarity condition on the true density, certain credible sets from the posterior distribution are adaptive confidence bands, having prescribed coverage level and with a diameter shrinking at optimal rate in the minimax sense.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/20-AIHP1132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/20-AIHP1132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 6

摘要

摘要:在密度估计模型中,考虑了利用Pólya树型先验分布进行自适应推理的问题。介绍了一类具有树形结构的先验密度,称为spike-and-slab Pólya树。对于这一类,得到了两类结果:第一,对于0和1之间的任何Hölder真密度的正则性,贝叶斯后验分布以自适应的方式收敛于最大范数的极小极大率,从而提供了[5]中经典Pólya树的结果的自适应对应。其次,考虑了不确定度的量化问题。导出了一个自适应非参数Bernstein - von Mises定理。其次,在真密度的自相似条件下,来自后验分布的某些可信集是自适应置信带,具有规定的覆盖水平,直径在极小极大意义上以最优速率收缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spike and slab Pólya tree posterior densities: Adaptive inference
Abstract: In the density estimation model, the question of adaptive inference using Pólya tree–type prior distributions is considered. A class of prior densities having a tree structure, called spike–and–slab Pólya trees, is introduced. For this class, two types of results are obtained: first, the Bayesian posterior distribution is shown to converge at the minimax rate for the supremum norm in an adaptive way, for any Hölder regularity of the true density between 0 and 1, thereby providing adaptive counterparts to the results for classical Pólya trees in [5]. Second, the question of uncertainty quantification is considered. An adaptive nonparametric Bernstein– von Mises theorem is derived. Next, it is shown that, under a self-similarity condition on the true density, certain credible sets from the posterior distribution are adaptive confidence bands, having prescribed coverage level and with a diameter shrinking at optimal rate in the minimax sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信