{"title":"线性弹性中DPG近似的超收敛性","authors":"F. Bertrand, H. Schneider","doi":"10.1051/m2an/2022071","DOIUrl":null,"url":null,"abstract":"Existing a priori convergence results of the discontinuous Petrov-Galerkin method to solve the problem of linear elasticity are improved. Using duality arguments, we show that higher convergence rates for the displacement can be obtained. Post-processing techniques are introduced in order to prove superconvergence and numerical experiments validates our theory.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superconvergence of DPG approximations in linear elasticity\",\"authors\":\"F. Bertrand, H. Schneider\",\"doi\":\"10.1051/m2an/2022071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing a priori convergence results of the discontinuous Petrov-Galerkin method to solve the problem of linear elasticity are improved. Using duality arguments, we show that higher convergence rates for the displacement can be obtained. Post-processing techniques are introduced in order to prove superconvergence and numerical experiments validates our theory.\",\"PeriodicalId\":50499,\"journal\":{\"name\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/m2an/2022071\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2022071","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Superconvergence of DPG approximations in linear elasticity
Existing a priori convergence results of the discontinuous Petrov-Galerkin method to solve the problem of linear elasticity are improved. Using duality arguments, we show that higher convergence rates for the displacement can be obtained. Post-processing techniques are introduced in order to prove superconvergence and numerical experiments validates our theory.
期刊介绍:
M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem.
Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.