表稳定和点阵路径

IF 0.4 Q4 MATHEMATICS, APPLIED
Connor Ahlbach, Jacob David, Suho Oh, Christopher Wu
{"title":"表稳定和点阵路径","authors":"Connor Ahlbach, Jacob David, Suho Oh, Christopher Wu","doi":"10.4310/joc.2022.v13.n1.a5","DOIUrl":null,"url":null,"abstract":"If one attaches shifted copies of a skew tableau to the right of itself and rectifies, at a certain point the copies no longer experience vertical slides, a phenomenon called tableau stabilization. While tableau stabilization was originally developed to construct the sufficiently large rectangular tableaux fixed by given powers of promotion, the purpose of this paper is to improve the original bound on tableau stabilization to the number of rows of the skew tableau. In order to prove this bound, we encode increasing subsequences as lattice paths and show that various operations on these lattice paths weakly increase the maximum combined length of the increasing subsequences.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"220 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tableau stabilization and lattice paths\",\"authors\":\"Connor Ahlbach, Jacob David, Suho Oh, Christopher Wu\",\"doi\":\"10.4310/joc.2022.v13.n1.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If one attaches shifted copies of a skew tableau to the right of itself and rectifies, at a certain point the copies no longer experience vertical slides, a phenomenon called tableau stabilization. While tableau stabilization was originally developed to construct the sufficiently large rectangular tableaux fixed by given powers of promotion, the purpose of this paper is to improve the original bound on tableau stabilization to the number of rows of the skew tableau. In order to prove this bound, we encode increasing subsequences as lattice paths and show that various operations on these lattice paths weakly increase the maximum combined length of the increasing subsequences.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"220 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/joc.2022.v13.n1.a5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2022.v13.n1.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

如果一个人将一个倾斜的画面的移动副本附着在它自己的右边并进行校正,在某一点上,这些副本不再经历垂直滑动,这种现象称为画面稳定。表稳定化最初是为了构造给定升力固定的足够大的矩形表而发展起来的,而本文的目的是将表稳定化的原界改进为倾斜表的行数。为了证明这个界,我们将递增子序列编码为格路径,并证明在这些格路径上的各种操作弱地增加递增子序列的最大组合长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tableau stabilization and lattice paths
If one attaches shifted copies of a skew tableau to the right of itself and rectifies, at a certain point the copies no longer experience vertical slides, a phenomenon called tableau stabilization. While tableau stabilization was originally developed to construct the sufficiently large rectangular tableaux fixed by given powers of promotion, the purpose of this paper is to improve the original bound on tableau stabilization to the number of rows of the skew tableau. In order to prove this bound, we encode increasing subsequences as lattice paths and show that various operations on these lattice paths weakly increase the maximum combined length of the increasing subsequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信