非线性整数算法的验证

P. Beame, Vincent Liew
{"title":"非线性整数算法的验证","authors":"P. Beame, Vincent Liew","doi":"10.1145/3319396","DOIUrl":null,"url":null,"abstract":"We eliminate a key roadblock to efficient verification of nonlinear integer arithmetic using CDCL SAT solvers, by showing how to construct short resolution proofs for many properties of the most widely used multiplier circuits. Such short proofs were conjectured not to exist. More precisely, we give nO(1) size regular resolution proofs for arbitrary degree 2 identities on array, diagonal, and Booth multipliers and nO(log n) size proofs for these identities on Wallace tree multipliers.","PeriodicalId":17199,"journal":{"name":"Journal of the ACM (JACM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Toward Verifying Nonlinear Integer Arithmetic\",\"authors\":\"P. Beame, Vincent Liew\",\"doi\":\"10.1145/3319396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We eliminate a key roadblock to efficient verification of nonlinear integer arithmetic using CDCL SAT solvers, by showing how to construct short resolution proofs for many properties of the most widely used multiplier circuits. Such short proofs were conjectured not to exist. More precisely, we give nO(1) size regular resolution proofs for arbitrary degree 2 identities on array, diagonal, and Booth multipliers and nO(log n) size proofs for these identities on Wallace tree multipliers.\",\"PeriodicalId\":17199,\"journal\":{\"name\":\"Journal of the ACM (JACM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM (JACM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3319396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM (JACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3319396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们通过展示如何为最广泛使用的乘法器电路的许多性质构造短分辨率证明,消除了使用CDCL SAT求解器有效验证非线性整数算法的关键障碍。这样简短的证明被认为是不存在的。更准确地说,我们给出了数组、对角线和Booth乘法器上任意2度恒等式的nO(1)大小正则分辨率证明,以及Wallace树乘法器上这些恒等式的nO(log n)大小证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward Verifying Nonlinear Integer Arithmetic
We eliminate a key roadblock to efficient verification of nonlinear integer arithmetic using CDCL SAT solvers, by showing how to construct short resolution proofs for many properties of the most widely used multiplier circuits. Such short proofs were conjectured not to exist. More precisely, we give nO(1) size regular resolution proofs for arbitrary degree 2 identities on array, diagonal, and Booth multipliers and nO(log n) size proofs for these identities on Wallace tree multipliers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信