{"title":"具有定子磁通屏障和单层集中绕组的高效内嵌式永磁同步电机设计","authors":"V. Bilyi, D. Gerling","doi":"10.1109/IEMDC.2015.7409210","DOIUrl":null,"url":null,"abstract":"This paper presents the design of a high-performance 14-pole, 12-slot interior permanent magnet synchronous machine with flux barriers inside the stator iron core and fractional-slot concentrated windings. This work focuses on electromagnetic, mechanical and thermal aspects of the machine design. The specific goal of this work was to design an electrical machine, which will have a small size, high power-to-weight ratio, high efficiency, especially at part-load operating points, and high speed capability for traction drive applications. Therefore the unconventional stator design is used. The proposed machine design was compared with the conventional one, concerning the magnetic saturation, spectrum of the magneto-motive force and produced torque. To ensure the high speed capability of the motor, the numerical structural analysis of the rotor is shown. Temperature behavior inside of the designed motor at steady-state operating point is shown.","PeriodicalId":6477,"journal":{"name":"2015 IEEE International Electric Machines & Drives Conference (IEMDC)","volume":"39 1","pages":"1177-1183"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Design of high-efficiency interior permanent magnet synchronous machine with stator flux barriers and single-layer concentrated windings\",\"authors\":\"V. Bilyi, D. Gerling\",\"doi\":\"10.1109/IEMDC.2015.7409210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design of a high-performance 14-pole, 12-slot interior permanent magnet synchronous machine with flux barriers inside the stator iron core and fractional-slot concentrated windings. This work focuses on electromagnetic, mechanical and thermal aspects of the machine design. The specific goal of this work was to design an electrical machine, which will have a small size, high power-to-weight ratio, high efficiency, especially at part-load operating points, and high speed capability for traction drive applications. Therefore the unconventional stator design is used. The proposed machine design was compared with the conventional one, concerning the magnetic saturation, spectrum of the magneto-motive force and produced torque. To ensure the high speed capability of the motor, the numerical structural analysis of the rotor is shown. Temperature behavior inside of the designed motor at steady-state operating point is shown.\",\"PeriodicalId\":6477,\"journal\":{\"name\":\"2015 IEEE International Electric Machines & Drives Conference (IEMDC)\",\"volume\":\"39 1\",\"pages\":\"1177-1183\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Electric Machines & Drives Conference (IEMDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMDC.2015.7409210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electric Machines & Drives Conference (IEMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC.2015.7409210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of high-efficiency interior permanent magnet synchronous machine with stator flux barriers and single-layer concentrated windings
This paper presents the design of a high-performance 14-pole, 12-slot interior permanent magnet synchronous machine with flux barriers inside the stator iron core and fractional-slot concentrated windings. This work focuses on electromagnetic, mechanical and thermal aspects of the machine design. The specific goal of this work was to design an electrical machine, which will have a small size, high power-to-weight ratio, high efficiency, especially at part-load operating points, and high speed capability for traction drive applications. Therefore the unconventional stator design is used. The proposed machine design was compared with the conventional one, concerning the magnetic saturation, spectrum of the magneto-motive force and produced torque. To ensure the high speed capability of the motor, the numerical structural analysis of the rotor is shown. Temperature behavior inside of the designed motor at steady-state operating point is shown.