{"title":"与几何-算术凸函数相关的fej<s:1>型积分不等式及其应用","authors":"S. Dragomir, M. Latif, E. Momoniat","doi":"10.12697/ACUTM.2019.23.05","DOIUrl":null,"url":null,"abstract":"A new identity involving a geometrically symmetric function and a differentiable function is established. Some new Fejér type integral inequalities, connected with the left part of Hermite–Hadamard type inequalities for geometrically-arithmetically convex functions, are presented by using the Hölder integral inequality and the notion of geometrically-arithmetically convexity. Applications of our results to special means of positive real numbers are given.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"352 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fejér type integral inequalities related with geometrically-arithmetically convex functions with applications\",\"authors\":\"S. Dragomir, M. Latif, E. Momoniat\",\"doi\":\"10.12697/ACUTM.2019.23.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new identity involving a geometrically symmetric function and a differentiable function is established. Some new Fejér type integral inequalities, connected with the left part of Hermite–Hadamard type inequalities for geometrically-arithmetically convex functions, are presented by using the Hölder integral inequality and the notion of geometrically-arithmetically convexity. Applications of our results to special means of positive real numbers are given.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"352 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/ACUTM.2019.23.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/ACUTM.2019.23.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Fejér type integral inequalities related with geometrically-arithmetically convex functions with applications
A new identity involving a geometrically symmetric function and a differentiable function is established. Some new Fejér type integral inequalities, connected with the left part of Hermite–Hadamard type inequalities for geometrically-arithmetically convex functions, are presented by using the Hölder integral inequality and the notion of geometrically-arithmetically convexity. Applications of our results to special means of positive real numbers are given.