与几何-算术凸函数相关的fej型积分不等式及其应用

IF 0.3 Q4 MATHEMATICS
S. Dragomir, M. Latif, E. Momoniat
{"title":"与几何-算术凸函数相关的fej<s:1>型积分不等式及其应用","authors":"S. Dragomir, M. Latif, E. Momoniat","doi":"10.12697/ACUTM.2019.23.05","DOIUrl":null,"url":null,"abstract":"A new identity involving a geometrically symmetric function and a differentiable function is established. Some new Fejér type integral inequalities, connected with the left part of Hermite–Hadamard type inequalities for geometrically-arithmetically convex functions, are presented by using the Hölder integral inequality and the notion of geometrically-arithmetically convexity. Applications of our results to special means of positive real numbers are given.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"352 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fejér type integral inequalities related with geometrically-arithmetically convex functions with applications\",\"authors\":\"S. Dragomir, M. Latif, E. Momoniat\",\"doi\":\"10.12697/ACUTM.2019.23.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new identity involving a geometrically symmetric function and a differentiable function is established. Some new Fejér type integral inequalities, connected with the left part of Hermite–Hadamard type inequalities for geometrically-arithmetically convex functions, are presented by using the Hölder integral inequality and the notion of geometrically-arithmetically convexity. Applications of our results to special means of positive real numbers are given.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"352 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/ACUTM.2019.23.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/ACUTM.2019.23.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

建立了一个包含几何对称函数和可微函数的恒等式。利用Hölder积分不等式和几何-算术凸性的概念,结合几何-算术凸函数的Hermite-Hadamard型不等式的左部,给出了一些新的fej型积分不等式。给出了我们的结果在正实数的特殊均值上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fejér type integral inequalities related with geometrically-arithmetically convex functions with applications
A new identity involving a geometrically symmetric function and a differentiable function is established. Some new Fejér type integral inequalities, connected with the left part of Hermite–Hadamard type inequalities for geometrically-arithmetically convex functions, are presented by using the Hölder integral inequality and the notion of geometrically-arithmetically convexity. Applications of our results to special means of positive real numbers are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信