二次型最小值的计算(初步报告)

A. Yao
{"title":"二次型最小值的计算(初步报告)","authors":"A. Yao","doi":"10.1145/800116.803749","DOIUrl":null,"url":null,"abstract":"The following problem was recently raised by C. William Gear [1]: Let F(x1,x2,...,xn) = &Sgr;i≤j a'ijxixj + &Sgr;i bixi +c be a quadratic form in n variables. We wish to compute the point x→(0) = (x1(0),...,xn(0)), at which F achieves its minimum, by a series of adaptive functional evaluations. It is clear that, by evaluating F(x→) at 1/2(n+1)(n+2)+1 points, we can determine the coefficients a'ij,bi,c and thereby find the point x→(0). Gear's question is, “How many evaluations are necessary?” In this paper, we shall prove that O(n2) evaluations are necessary in the worst case for any such algorithm.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1975-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On computing the minima of quadratic forms (Preliminary Report)\",\"authors\":\"A. Yao\",\"doi\":\"10.1145/800116.803749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The following problem was recently raised by C. William Gear [1]: Let F(x1,x2,...,xn) = &Sgr;i≤j a'ijxixj + &Sgr;i bixi +c be a quadratic form in n variables. We wish to compute the point x→(0) = (x1(0),...,xn(0)), at which F achieves its minimum, by a series of adaptive functional evaluations. It is clear that, by evaluating F(x→) at 1/2(n+1)(n+2)+1 points, we can determine the coefficients a'ij,bi,c and thereby find the point x→(0). Gear's question is, “How many evaluations are necessary?” In this paper, we shall prove that O(n2) evaluations are necessary in the worst case for any such algorithm.\",\"PeriodicalId\":20566,\"journal\":{\"name\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1975-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800116.803749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800116.803749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

最近,c . William Gear[1]提出了以下问题:设F(x1,x2,…,xn) = &Sgr;i≤j a'ijxixj + &Sgr;i bixi +c是n变量的二次型。我们希望通过一系列自适应函数求值来计算点x→(0)= (x1(0),…,xn(0)),在此点F达到最小值。很明显,通过计算F(x→)在1/2(n+1)(n+2)+1点处的值,我们可以确定系数a'ij,bi,c,从而找到点x→(0)。Gear的问题是,“有多少评估是必要的?”在本文中,我们将证明在最坏的情况下,任何这样的算法都需要O(n2)次求值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On computing the minima of quadratic forms (Preliminary Report)
The following problem was recently raised by C. William Gear [1]: Let F(x1,x2,...,xn) = &Sgr;i≤j a'ijxixj + &Sgr;i bixi +c be a quadratic form in n variables. We wish to compute the point x→(0) = (x1(0),...,xn(0)), at which F achieves its minimum, by a series of adaptive functional evaluations. It is clear that, by evaluating F(x→) at 1/2(n+1)(n+2)+1 points, we can determine the coefficients a'ij,bi,c and thereby find the point x→(0). Gear's question is, “How many evaluations are necessary?” In this paper, we shall prove that O(n2) evaluations are necessary in the worst case for any such algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信