{"title":"循环赛Elo评分系统的mse最优k因子","authors":"Victor S. Chan","doi":"10.1515/jqas-2021-0079","DOIUrl":null,"url":null,"abstract":"Abstract The Elo rating system contains a coefficient called the K-factor which governs the amount of change to the updated ratings and is often determined by empirical or heuristic means. Theoretical studies on the K-factor have been sparse and not much is known about the pertinent factors that impact its appropriate values in applications. This paper has two main goals: to present a new formulation of the K-factor that is optimal with respect to the mean-squared-error (MSE) criterion in a round-robin tournament setting and to investigate the effects of the relevant variables, including the number of tournament participants n, on the optimal K-factor (based on the model-averaged MSE). It is found that n and the variability of the deviation between the true rating and the pre-tournament rating have a strong influence on the optimal K-factor. Comparisons between the MSE-optimal K-factor and the K-factors from Elo and from the US Chess Federation as a function of n are also provided. Although the results are applicable to other sports in similar settings, the study focuses on chess and makes use of the rating data and the K-factor values from the chess world.","PeriodicalId":16925,"journal":{"name":"Journal of Quantitative Analysis in Sports","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MSE-optimal K-factor of the Elo rating system for round-robin tournament\",\"authors\":\"Victor S. Chan\",\"doi\":\"10.1515/jqas-2021-0079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Elo rating system contains a coefficient called the K-factor which governs the amount of change to the updated ratings and is often determined by empirical or heuristic means. Theoretical studies on the K-factor have been sparse and not much is known about the pertinent factors that impact its appropriate values in applications. This paper has two main goals: to present a new formulation of the K-factor that is optimal with respect to the mean-squared-error (MSE) criterion in a round-robin tournament setting and to investigate the effects of the relevant variables, including the number of tournament participants n, on the optimal K-factor (based on the model-averaged MSE). It is found that n and the variability of the deviation between the true rating and the pre-tournament rating have a strong influence on the optimal K-factor. Comparisons between the MSE-optimal K-factor and the K-factors from Elo and from the US Chess Federation as a function of n are also provided. Although the results are applicable to other sports in similar settings, the study focuses on chess and makes use of the rating data and the K-factor values from the chess world.\",\"PeriodicalId\":16925,\"journal\":{\"name\":\"Journal of Quantitative Analysis in Sports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Analysis in Sports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jqas-2021-0079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Analysis in Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2021-0079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
MSE-optimal K-factor of the Elo rating system for round-robin tournament
Abstract The Elo rating system contains a coefficient called the K-factor which governs the amount of change to the updated ratings and is often determined by empirical or heuristic means. Theoretical studies on the K-factor have been sparse and not much is known about the pertinent factors that impact its appropriate values in applications. This paper has two main goals: to present a new formulation of the K-factor that is optimal with respect to the mean-squared-error (MSE) criterion in a round-robin tournament setting and to investigate the effects of the relevant variables, including the number of tournament participants n, on the optimal K-factor (based on the model-averaged MSE). It is found that n and the variability of the deviation between the true rating and the pre-tournament rating have a strong influence on the optimal K-factor. Comparisons between the MSE-optimal K-factor and the K-factors from Elo and from the US Chess Federation as a function of n are also provided. Although the results are applicable to other sports in similar settings, the study focuses on chess and makes use of the rating data and the K-factor values from the chess world.
期刊介绍:
The Journal of Quantitative Analysis in Sports (JQAS), an official journal of the American Statistical Association, publishes timely, high-quality peer-reviewed research on the quantitative aspects of professional and amateur sports, including collegiate and Olympic competition. The scope of application reflects the increasing demand for novel methods to analyze and understand data in the growing field of sports analytics. Articles come from a wide variety of sports and diverse perspectives, and address topics such as game outcome models, measurement and evaluation of player performance, tournament structure, analysis of rules and adjudication, within-game strategy, analysis of sporting technologies, and player and team ranking methods. JQAS seeks to publish manuscripts that demonstrate original ways of approaching problems, develop cutting edge methods, and apply innovative thinking to solve difficult challenges in sports contexts. JQAS brings together researchers from various disciplines, including statistics, operations research, machine learning, scientific computing, econometrics, and sports management.