分段锥形喷嘴的优化:理论与应用

K. Hasselmann, Muhammad Aiman Bin Khamalrudin, S. Wiesche, E. Kenig
{"title":"分段锥形喷嘴的优化:理论与应用","authors":"K. Hasselmann, Muhammad Aiman Bin Khamalrudin, S. Wiesche, E. Kenig","doi":"10.1115/FEDSM2018-83055","DOIUrl":null,"url":null,"abstract":"In this contribution, an optimization study based on computational fluid dynamics (CFD) in combination with Stratford’s analytical separation criterion was developed for the design of piece-wise conical contraction zones. The occurrence of flow separation can be formally described by a newly introduced dimensionless separation number. In the optimization process, the risk of flow separation is reduced by minimizing this separation number. It was found that the optimized piece-wise conical nozzle shape did not correspond to a simple geometric approximation of the ideal polynomial shape. In fact, it was beneficial to reduce the deflection in the outlet region for a piece-wise conical nozzle stronger than for a conventional one. In order to validate the new design method, large-scale tests for different nozzle designs were conducted. The measured velocity profiles and wall pressure distributions agreed well with the CFD predictions. The new method was applied for designing the contraction zone of a new closed-loop organic vapor wind tunnel (CLOWT) working at elevated pressure levels.","PeriodicalId":23480,"journal":{"name":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","volume":"331 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Piece-Wise Conical Nozzles: Theory and Application\",\"authors\":\"K. Hasselmann, Muhammad Aiman Bin Khamalrudin, S. Wiesche, E. Kenig\",\"doi\":\"10.1115/FEDSM2018-83055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this contribution, an optimization study based on computational fluid dynamics (CFD) in combination with Stratford’s analytical separation criterion was developed for the design of piece-wise conical contraction zones. The occurrence of flow separation can be formally described by a newly introduced dimensionless separation number. In the optimization process, the risk of flow separation is reduced by minimizing this separation number. It was found that the optimized piece-wise conical nozzle shape did not correspond to a simple geometric approximation of the ideal polynomial shape. In fact, it was beneficial to reduce the deflection in the outlet region for a piece-wise conical nozzle stronger than for a conventional one. In order to validate the new design method, large-scale tests for different nozzle designs were conducted. The measured velocity profiles and wall pressure distributions agreed well with the CFD predictions. The new method was applied for designing the contraction zone of a new closed-loop organic vapor wind tunnel (CLOWT) working at elevated pressure levels.\",\"PeriodicalId\":23480,\"journal\":{\"name\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"volume\":\"331 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/FEDSM2018-83055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/FEDSM2018-83055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,基于计算流体力学(CFD)结合Stratford的解析分离准则,对分段锥形收缩区的设计进行了优化研究。流动分离的发生可以用一个新引入的无量纲分离数来正式描述。在优化过程中,通过最小化该分离数来降低流动分离的风险。结果表明,优化后的分段锥形喷嘴形状不符合理想多项式形状的简单几何近似。事实上,与传统喷嘴相比,坚固的分段式锥形喷嘴更有利于减少出口区域的偏转。为了验证新的设计方法,对不同喷嘴设计进行了大规模试验。实测的速度分布和壁面压力分布与CFD预测吻合较好。将该方法应用于高压下新型闭环有机蒸汽风洞的收缩区设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Piece-Wise Conical Nozzles: Theory and Application
In this contribution, an optimization study based on computational fluid dynamics (CFD) in combination with Stratford’s analytical separation criterion was developed for the design of piece-wise conical contraction zones. The occurrence of flow separation can be formally described by a newly introduced dimensionless separation number. In the optimization process, the risk of flow separation is reduced by minimizing this separation number. It was found that the optimized piece-wise conical nozzle shape did not correspond to a simple geometric approximation of the ideal polynomial shape. In fact, it was beneficial to reduce the deflection in the outlet region for a piece-wise conical nozzle stronger than for a conventional one. In order to validate the new design method, large-scale tests for different nozzle designs were conducted. The measured velocity profiles and wall pressure distributions agreed well with the CFD predictions. The new method was applied for designing the contraction zone of a new closed-loop organic vapor wind tunnel (CLOWT) working at elevated pressure levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信