混合特征情况下的弱正态和半正态

IF 0.3 4区 数学 Q4 MATHEMATICS
Jun Horiuchi, Kazuma Shimomoto
{"title":"混合特征情况下的弱正态和半正态","authors":"Jun Horiuchi, Kazuma Shimomoto","doi":"10.1216/jca.2022.14.351","DOIUrl":null,"url":null,"abstract":"In this article, we give a few examples of local rings in relation to weak normality and seminormality in mixed characteristic. It is known that two concepts can differ in the equal prime characteristic case, while they coincide in the equal characteristic zero case. No explicit examples seem to be documented in the existing literature in the mixed characteristic case. We also establish the local Bertini theorem for weak normality in mixed characteristic under a certain condition.","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak normality and seminormality in the mixed characteristic case\",\"authors\":\"Jun Horiuchi, Kazuma Shimomoto\",\"doi\":\"10.1216/jca.2022.14.351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we give a few examples of local rings in relation to weak normality and seminormality in mixed characteristic. It is known that two concepts can differ in the equal prime characteristic case, while they coincide in the equal characteristic zero case. No explicit examples seem to be documented in the existing literature in the mixed characteristic case. We also establish the local Bertini theorem for weak normality in mixed characteristic under a certain condition.\",\"PeriodicalId\":49037,\"journal\":{\"name\":\"Journal of Commutative Algebra\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Commutative Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/jca.2022.14.351\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Commutative Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2022.14.351","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一些局部环与混合特征中的弱正态和半正态有关的例子。已知两个概念在等素数特征情况下可以不同,而在等特征零情况下可以重合。在现有文献中,似乎没有明确的例子记录在混合特征病例中。在一定条件下,建立了混合特征弱正态性的局部Bertini定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak normality and seminormality in the mixed characteristic case
In this article, we give a few examples of local rings in relation to weak normality and seminormality in mixed characteristic. It is known that two concepts can differ in the equal prime characteristic case, while they coincide in the equal characteristic zero case. No explicit examples seem to be documented in the existing literature in the mixed characteristic case. We also establish the local Bertini theorem for weak normality in mixed characteristic under a certain condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
16.70%
发文量
28
审稿时长
>12 weeks
期刊介绍: Journal of Commutative Algebra publishes significant results in the area of commutative algebra and closely related fields including algebraic number theory, algebraic geometry, representation theory, semigroups and monoids. The journal also publishes substantial expository/survey papers as well as conference proceedings. Any person interested in editing such a proceeding should contact one of the managing editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信