抛物型偏微分方程的有限差分法

Nigatie Y
{"title":"抛物型偏微分方程的有限差分法","authors":"Nigatie Y","doi":"10.4172/21689679.1000418","DOIUrl":null,"url":null,"abstract":"In this paper finite difference methods will used to solve both one and two dimensional heat equations which are the well-known partial differential equations. Figure 1: Conditions of prescribed boundary. Citation: Nigatie Y (2018) The Finite Difference Methods for Parabolic Partial Differential Equations. J Appl Computat Math 7: 418. doi: 10.4172/21689679.1000418","PeriodicalId":15007,"journal":{"name":"Journal of Applied and Computational Mathematics","volume":"329 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Finite Difference Methods for Parabolic Partial Differential Equations\",\"authors\":\"Nigatie Y\",\"doi\":\"10.4172/21689679.1000418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper finite difference methods will used to solve both one and two dimensional heat equations which are the well-known partial differential equations. Figure 1: Conditions of prescribed boundary. Citation: Nigatie Y (2018) The Finite Difference Methods for Parabolic Partial Differential Equations. J Appl Computat Math 7: 418. doi: 10.4172/21689679.1000418\",\"PeriodicalId\":15007,\"journal\":{\"name\":\"Journal of Applied and Computational Mathematics\",\"volume\":\"329 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/21689679.1000418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/21689679.1000418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文将用有限差分法求解一维和二维热方程,即众所周知的偏微分方程。图1:规定边界条件。引用本文:负Y(2018)抛物型偏微分方程的有限差分方法。[J]计算机数学,7:418。doi: 10.4172/21689679.1000418
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Finite Difference Methods for Parabolic Partial Differential Equations
In this paper finite difference methods will used to solve both one and two dimensional heat equations which are the well-known partial differential equations. Figure 1: Conditions of prescribed boundary. Citation: Nigatie Y (2018) The Finite Difference Methods for Parabolic Partial Differential Equations. J Appl Computat Math 7: 418. doi: 10.4172/21689679.1000418
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信