非参数回归函数在异质面板中的分类

M. Vogt, O. Linton
{"title":"非参数回归函数在异质面板中的分类","authors":"M. Vogt, O. Linton","doi":"10.2139/ssrn.2567312","DOIUrl":null,"url":null,"abstract":"We investigate a nonparametric panel model with heterogeneous regression functions. In a variety of applications, it is natural to impose a group structure on the regression curves. Specifically, we may suppose that the observed individuals can be grouped into a number of classes whose members all share the same regression function. We develop a statistical procedure to estimate the unknown group structure from the observed data. Moreover, we derive the asymptotic properties of the procedure and investigate its finite sample performance by means of a simulation study and a real-data example.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Classification of Nonparametric Regression Functions in Heterogeneous Panels\",\"authors\":\"M. Vogt, O. Linton\",\"doi\":\"10.2139/ssrn.2567312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a nonparametric panel model with heterogeneous regression functions. In a variety of applications, it is natural to impose a group structure on the regression curves. Specifically, we may suppose that the observed individuals can be grouped into a number of classes whose members all share the same regression function. We develop a statistical procedure to estimate the unknown group structure from the observed data. Moreover, we derive the asymptotic properties of the procedure and investigate its finite sample performance by means of a simulation study and a real-data example.\",\"PeriodicalId\":11744,\"journal\":{\"name\":\"ERN: Nonparametric Methods (Topic)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Nonparametric Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2567312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2567312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们研究了一个具有异质回归函数的非参数面板模型。在各种各样的应用中,在回归曲线上强加一个组结构是很自然的。具体地说,我们可以假设观察到的个体可以被分成许多类,这些类的成员都共享相同的回归函数。我们开发了一个统计程序来估计未知的群结构从观测数据。此外,我们还推导了该过程的渐近性质,并通过仿真研究和实例研究了它的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Nonparametric Regression Functions in Heterogeneous Panels
We investigate a nonparametric panel model with heterogeneous regression functions. In a variety of applications, it is natural to impose a group structure on the regression curves. Specifically, we may suppose that the observed individuals can be grouped into a number of classes whose members all share the same regression function. We develop a statistical procedure to estimate the unknown group structure from the observed data. Moreover, we derive the asymptotic properties of the procedure and investigate its finite sample performance by means of a simulation study and a real-data example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信