基于单片三维液态机的神经形态处理器设计与架构协同优化

B. W. Ku, Yu Liu, Yingyezhe Jin, S. Samal, Peng Li, S. Lim
{"title":"基于单片三维液态机的神经形态处理器设计与架构协同优化","authors":"B. W. Ku, Yu Liu, Yingyezhe Jin, S. Samal, Peng Li, S. Lim","doi":"10.1145/3195970.3196024","DOIUrl":null,"url":null,"abstract":"A liquid state machine (LSM) is a powerful recurrent spiking neural network shown to be effective in various learning tasks including speech recognition. In this work, we investigate design and architectural co-optimization to further improve the area-energy efficiency of LSM-based speech recognition processors with monolithic 3D IC (M3D) technology. We conduct fine-grained tier partitioning, where individual neurons are folded, and explore the impact of shared memory architecture and synaptic model complexity on the power-performance-area-accuracy (PPA) benefit of M3D LSM-based speech recognition. In training and classification tasks using spoken English letters, we obtain up to 70.0% PPAA savings over 2D ICs.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"4324 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Design and Architectural Co-optimization of Monolithic 3D Liquid State Machine-based Neuromorphic Processor\",\"authors\":\"B. W. Ku, Yu Liu, Yingyezhe Jin, S. Samal, Peng Li, S. Lim\",\"doi\":\"10.1145/3195970.3196024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A liquid state machine (LSM) is a powerful recurrent spiking neural network shown to be effective in various learning tasks including speech recognition. In this work, we investigate design and architectural co-optimization to further improve the area-energy efficiency of LSM-based speech recognition processors with monolithic 3D IC (M3D) technology. We conduct fine-grained tier partitioning, where individual neurons are folded, and explore the impact of shared memory architecture and synaptic model complexity on the power-performance-area-accuracy (PPA) benefit of M3D LSM-based speech recognition. In training and classification tasks using spoken English letters, we obtain up to 70.0% PPAA savings over 2D ICs.\",\"PeriodicalId\":6491,\"journal\":{\"name\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"volume\":\"4324 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3195970.3196024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3196024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

液态机(LSM)是一种强大的循环尖峰神经网络,在包括语音识别在内的各种学习任务中表现出有效的效果。在这项工作中,我们研究了设计和架构的协同优化,以进一步提高基于lsm的单片3D IC (M3D)技术的语音识别处理器的面积能源效率。我们进行了细粒度的层划分,其中单个神经元折叠,并探讨了共享内存架构和突触模型复杂性对基于M3D lsm的语音识别功率-性能-面积-精度(PPA)效益的影响。在使用英语口语字母的训练和分类任务中,我们比2D ic节省了高达70.0%的PPAA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Architectural Co-optimization of Monolithic 3D Liquid State Machine-based Neuromorphic Processor
A liquid state machine (LSM) is a powerful recurrent spiking neural network shown to be effective in various learning tasks including speech recognition. In this work, we investigate design and architectural co-optimization to further improve the area-energy efficiency of LSM-based speech recognition processors with monolithic 3D IC (M3D) technology. We conduct fine-grained tier partitioning, where individual neurons are folded, and explore the impact of shared memory architecture and synaptic model complexity on the power-performance-area-accuracy (PPA) benefit of M3D LSM-based speech recognition. In training and classification tasks using spoken English letters, we obtain up to 70.0% PPAA savings over 2D ICs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信