{"title":"三倍可逆围巾缝制冒险(和说明)","authors":"E. Baker, C. Wampler, Daniel R. Baker","doi":"10.1080/17513472.2023.2200897","DOIUrl":null,"url":null,"abstract":"We provide relevant math and detailed sewing instructions for constructing a toroidal scarf that reverses three ways and whose design uses the unique inversion properties of a particular torus geometry and particular 3-component link. We explain how the scarf’s sewing instructions are guided by the mathematics underlying its construction. GRAPHICAL ABSTRACT","PeriodicalId":42612,"journal":{"name":"Journal of Mathematics and the Arts","volume":"15 1","pages":"22 - 49"},"PeriodicalIF":0.3000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triply invertible scarf sewing adventures (and instructions)\",\"authors\":\"E. Baker, C. Wampler, Daniel R. Baker\",\"doi\":\"10.1080/17513472.2023.2200897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide relevant math and detailed sewing instructions for constructing a toroidal scarf that reverses three ways and whose design uses the unique inversion properties of a particular torus geometry and particular 3-component link. We explain how the scarf’s sewing instructions are guided by the mathematics underlying its construction. GRAPHICAL ABSTRACT\",\"PeriodicalId\":42612,\"journal\":{\"name\":\"Journal of Mathematics and the Arts\",\"volume\":\"15 1\",\"pages\":\"22 - 49\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and the Arts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17513472.2023.2200897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and the Arts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17513472.2023.2200897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
We provide relevant math and detailed sewing instructions for constructing a toroidal scarf that reverses three ways and whose design uses the unique inversion properties of a particular torus geometry and particular 3-component link. We explain how the scarf’s sewing instructions are guided by the mathematics underlying its construction. GRAPHICAL ABSTRACT