{"title":"试点项目:多组分热流体增产在哈萨克斯坦浅层稠油油藏上的应用","authors":"Leihao Yi, X. Hua, Wenlong Guan, Shiguo Xu, Ziyi Zhang, Yizhong Mei, E. Guo, Junping Liu, Li Zhong, Guohui Liu, Xiaoman Zheng, Zhang Wei","doi":"10.2118/204818-ms","DOIUrl":null,"url":null,"abstract":"Cyclic steam simulation (CSS) was widely used to recover heavy oil in shallow reservoirs in Kazakhstan. In the late stage of CSS in M oilfield, the performance of this CSS project was poor with high water cut and low oil steam ratio (OSR), indicating low economic benefit. The multi-component thermal fluid (MTF) stimulation trial has been conducted there since March 2018 to evaluate the feasibility of this technology.\n This paper introduces the field experience and the production performance of MTF stimulation. Results are from 32 cycles of MTF stimulations in 23 wells, most of which had completed their 4 cycles of CSS before.\n MTF technology is based on a high-pressure jet combustion mechanism, generating a mixture of nitrogen, carbon dioxide and vapor (MTF) under a sealed combustion condition. The mixture fluid provides a significant enhancement through a synergistic effect in the reservoir. The soaking and recovery process are the same as the conventional steam stimulation, meanwhile the requirements for completion and wellbore structure are the same as well. By the time of statistic, average cyclic OSR reaches 2.19 from 0.49 of last CSS cycle. Average water cut declines from 90% to 40% and daily oil production rises from 22 bbls to 33 bbls. Free water is almost invisible in the produced fluid, instead, a stable quasi-monophasic flow has been presented even at low temperatures. This effectively increases the fluidity and dilatancy of crude oil, and greatly replenishes the elastic energy of the formation. Meanwhile, with all components injected into the formation, MTF stimulation achieves significant reduction in carbon emissions.\n Although this is a pilot test, considerable economic benefits have been achieved with the increase of oil production efficiency. MTF stimulation brings an additional profit of USD 4.4 million for the first year under conditions of local material's cost. This successful pilot demonstrates that MTF stimulation may play an important role at late stage of CSS, even it has its own prospect in an initial heavy oil reservoir development. In the meantime, this pilot experience can be used as a reference for other similar reservoirs’ development.","PeriodicalId":11024,"journal":{"name":"Day 4 Wed, December 01, 2021","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pilot Project: Application of Multi-Component Thermal Fluid Stimulation on Shallow Heavy Oil Reservoir in Kazakhstan\",\"authors\":\"Leihao Yi, X. Hua, Wenlong Guan, Shiguo Xu, Ziyi Zhang, Yizhong Mei, E. Guo, Junping Liu, Li Zhong, Guohui Liu, Xiaoman Zheng, Zhang Wei\",\"doi\":\"10.2118/204818-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyclic steam simulation (CSS) was widely used to recover heavy oil in shallow reservoirs in Kazakhstan. In the late stage of CSS in M oilfield, the performance of this CSS project was poor with high water cut and low oil steam ratio (OSR), indicating low economic benefit. The multi-component thermal fluid (MTF) stimulation trial has been conducted there since March 2018 to evaluate the feasibility of this technology.\\n This paper introduces the field experience and the production performance of MTF stimulation. Results are from 32 cycles of MTF stimulations in 23 wells, most of which had completed their 4 cycles of CSS before.\\n MTF technology is based on a high-pressure jet combustion mechanism, generating a mixture of nitrogen, carbon dioxide and vapor (MTF) under a sealed combustion condition. The mixture fluid provides a significant enhancement through a synergistic effect in the reservoir. The soaking and recovery process are the same as the conventional steam stimulation, meanwhile the requirements for completion and wellbore structure are the same as well. By the time of statistic, average cyclic OSR reaches 2.19 from 0.49 of last CSS cycle. Average water cut declines from 90% to 40% and daily oil production rises from 22 bbls to 33 bbls. Free water is almost invisible in the produced fluid, instead, a stable quasi-monophasic flow has been presented even at low temperatures. This effectively increases the fluidity and dilatancy of crude oil, and greatly replenishes the elastic energy of the formation. Meanwhile, with all components injected into the formation, MTF stimulation achieves significant reduction in carbon emissions.\\n Although this is a pilot test, considerable economic benefits have been achieved with the increase of oil production efficiency. MTF stimulation brings an additional profit of USD 4.4 million for the first year under conditions of local material's cost. This successful pilot demonstrates that MTF stimulation may play an important role at late stage of CSS, even it has its own prospect in an initial heavy oil reservoir development. In the meantime, this pilot experience can be used as a reference for other similar reservoirs’ development.\",\"PeriodicalId\":11024,\"journal\":{\"name\":\"Day 4 Wed, December 01, 2021\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Wed, December 01, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204818-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Wed, December 01, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204818-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pilot Project: Application of Multi-Component Thermal Fluid Stimulation on Shallow Heavy Oil Reservoir in Kazakhstan
Cyclic steam simulation (CSS) was widely used to recover heavy oil in shallow reservoirs in Kazakhstan. In the late stage of CSS in M oilfield, the performance of this CSS project was poor with high water cut and low oil steam ratio (OSR), indicating low economic benefit. The multi-component thermal fluid (MTF) stimulation trial has been conducted there since March 2018 to evaluate the feasibility of this technology.
This paper introduces the field experience and the production performance of MTF stimulation. Results are from 32 cycles of MTF stimulations in 23 wells, most of which had completed their 4 cycles of CSS before.
MTF technology is based on a high-pressure jet combustion mechanism, generating a mixture of nitrogen, carbon dioxide and vapor (MTF) under a sealed combustion condition. The mixture fluid provides a significant enhancement through a synergistic effect in the reservoir. The soaking and recovery process are the same as the conventional steam stimulation, meanwhile the requirements for completion and wellbore structure are the same as well. By the time of statistic, average cyclic OSR reaches 2.19 from 0.49 of last CSS cycle. Average water cut declines from 90% to 40% and daily oil production rises from 22 bbls to 33 bbls. Free water is almost invisible in the produced fluid, instead, a stable quasi-monophasic flow has been presented even at low temperatures. This effectively increases the fluidity and dilatancy of crude oil, and greatly replenishes the elastic energy of the formation. Meanwhile, with all components injected into the formation, MTF stimulation achieves significant reduction in carbon emissions.
Although this is a pilot test, considerable economic benefits have been achieved with the increase of oil production efficiency. MTF stimulation brings an additional profit of USD 4.4 million for the first year under conditions of local material's cost. This successful pilot demonstrates that MTF stimulation may play an important role at late stage of CSS, even it has its own prospect in an initial heavy oil reservoir development. In the meantime, this pilot experience can be used as a reference for other similar reservoirs’ development.