Victor Zakhary, Faisal Nawab, D. Agrawal, A. E. Abbadi
{"title":"数据库风险:全球数据库布局的游戏","authors":"Victor Zakhary, Faisal Nawab, D. Agrawal, A. E. Abbadi","doi":"10.1145/2882903.2899405","DOIUrl":null,"url":null,"abstract":"Geo-replication is the process of maintaining copies of data at geographically dispersed datacenters for better availability and fault-tolerance. The distinguishing characteristic of geo-replication is the large wide-area latency between datacenters that varies widely depending on the location of the datacenters. Thus, choosing which datacenters to deploy a cloud application has a direct impact on the observable response time. We propose an optimization framework that automatically derives a geo-replication placement plan with the objective of minimizing latency. By running the optimization framework on real placement scenarios, we learn a set of placement optimizations for geo-replication. Some of these optimizations are surprising while others are in retrospect straight-forward. In this demonstration, we highlight the geo-replication placement optimizations through the DB-Risk game. DB-Risk invites players to create different placement scenarios while experimenting with the proposed optimizations. The placements created by the players are tested on real cloud deployments.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"DB-Risk: The Game of Global Database Placement\",\"authors\":\"Victor Zakhary, Faisal Nawab, D. Agrawal, A. E. Abbadi\",\"doi\":\"10.1145/2882903.2899405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geo-replication is the process of maintaining copies of data at geographically dispersed datacenters for better availability and fault-tolerance. The distinguishing characteristic of geo-replication is the large wide-area latency between datacenters that varies widely depending on the location of the datacenters. Thus, choosing which datacenters to deploy a cloud application has a direct impact on the observable response time. We propose an optimization framework that automatically derives a geo-replication placement plan with the objective of minimizing latency. By running the optimization framework on real placement scenarios, we learn a set of placement optimizations for geo-replication. Some of these optimizations are surprising while others are in retrospect straight-forward. In this demonstration, we highlight the geo-replication placement optimizations through the DB-Risk game. DB-Risk invites players to create different placement scenarios while experimenting with the proposed optimizations. The placements created by the players are tested on real cloud deployments.\",\"PeriodicalId\":20483,\"journal\":{\"name\":\"Proceedings of the 2016 International Conference on Management of Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2882903.2899405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2899405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Geo-replication is the process of maintaining copies of data at geographically dispersed datacenters for better availability and fault-tolerance. The distinguishing characteristic of geo-replication is the large wide-area latency between datacenters that varies widely depending on the location of the datacenters. Thus, choosing which datacenters to deploy a cloud application has a direct impact on the observable response time. We propose an optimization framework that automatically derives a geo-replication placement plan with the objective of minimizing latency. By running the optimization framework on real placement scenarios, we learn a set of placement optimizations for geo-replication. Some of these optimizations are surprising while others are in retrospect straight-forward. In this demonstration, we highlight the geo-replication placement optimizations through the DB-Risk game. DB-Risk invites players to create different placement scenarios while experimenting with the proposed optimizations. The placements created by the players are tested on real cloud deployments.