数据库风险:全球数据库布局的游戏

Victor Zakhary, Faisal Nawab, D. Agrawal, A. E. Abbadi
{"title":"数据库风险:全球数据库布局的游戏","authors":"Victor Zakhary, Faisal Nawab, D. Agrawal, A. E. Abbadi","doi":"10.1145/2882903.2899405","DOIUrl":null,"url":null,"abstract":"Geo-replication is the process of maintaining copies of data at geographically dispersed datacenters for better availability and fault-tolerance. The distinguishing characteristic of geo-replication is the large wide-area latency between datacenters that varies widely depending on the location of the datacenters. Thus, choosing which datacenters to deploy a cloud application has a direct impact on the observable response time. We propose an optimization framework that automatically derives a geo-replication placement plan with the objective of minimizing latency. By running the optimization framework on real placement scenarios, we learn a set of placement optimizations for geo-replication. Some of these optimizations are surprising while others are in retrospect straight-forward. In this demonstration, we highlight the geo-replication placement optimizations through the DB-Risk game. DB-Risk invites players to create different placement scenarios while experimenting with the proposed optimizations. The placements created by the players are tested on real cloud deployments.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"DB-Risk: The Game of Global Database Placement\",\"authors\":\"Victor Zakhary, Faisal Nawab, D. Agrawal, A. E. Abbadi\",\"doi\":\"10.1145/2882903.2899405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geo-replication is the process of maintaining copies of data at geographically dispersed datacenters for better availability and fault-tolerance. The distinguishing characteristic of geo-replication is the large wide-area latency between datacenters that varies widely depending on the location of the datacenters. Thus, choosing which datacenters to deploy a cloud application has a direct impact on the observable response time. We propose an optimization framework that automatically derives a geo-replication placement plan with the objective of minimizing latency. By running the optimization framework on real placement scenarios, we learn a set of placement optimizations for geo-replication. Some of these optimizations are surprising while others are in retrospect straight-forward. In this demonstration, we highlight the geo-replication placement optimizations through the DB-Risk game. DB-Risk invites players to create different placement scenarios while experimenting with the proposed optimizations. The placements created by the players are tested on real cloud deployments.\",\"PeriodicalId\":20483,\"journal\":{\"name\":\"Proceedings of the 2016 International Conference on Management of Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2882903.2899405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2899405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

地理复制是在地理上分散的数据中心维护数据副本的过程,以获得更好的可用性和容错性。地理复制的显著特征是数据中心之间存在较大的广域延迟,该延迟因数据中心的位置而异。因此,选择在哪个数据中心部署云应用程序对可观察的响应时间有直接影响。我们提出了一个优化框架,该框架可以自动导出一个以最小化延迟为目标的地理复制放置计划。通过在实际放置场景中运行优化框架,我们学习了一组用于地理复制的放置优化。其中一些优化是令人惊讶的,而另一些则是直接回顾的。在本演示中,我们将通过DB-Risk游戏强调地理复制放置优化。《DB-Risk》邀请玩家创造不同的放置场景,同时尝试所建议的优化。玩家创建的位置是在真实的云部署上进行测试的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DB-Risk: The Game of Global Database Placement
Geo-replication is the process of maintaining copies of data at geographically dispersed datacenters for better availability and fault-tolerance. The distinguishing characteristic of geo-replication is the large wide-area latency between datacenters that varies widely depending on the location of the datacenters. Thus, choosing which datacenters to deploy a cloud application has a direct impact on the observable response time. We propose an optimization framework that automatically derives a geo-replication placement plan with the objective of minimizing latency. By running the optimization framework on real placement scenarios, we learn a set of placement optimizations for geo-replication. Some of these optimizations are surprising while others are in retrospect straight-forward. In this demonstration, we highlight the geo-replication placement optimizations through the DB-Risk game. DB-Risk invites players to create different placement scenarios while experimenting with the proposed optimizations. The placements created by the players are tested on real cloud deployments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信